The try-specialize
crate provides limited, zero-cost
specialization in generic context on stable Rust.
use try_specialize::TrySpecialize;
fn example_specialize_by_value<T>(value: T) -> Result<u32, T> {
value.try_specialize()
}
fn example_specialize_by_ref<T: ?Sized>(value: &T) -> Option<&str> {
value.try_specialize_ref()
}
While specialization in Rust can be a tempting solution in many use cases, it is usually more idiomatic to use traits instead. Traits are the idiomatic way to achieve polymorphism in Rust, promoting better code clarity, reusability, and maintainability.
However, specialization can be suitable when you need to optimize performance by providing specialized implementations for some types without altering the code logic. It's also useful in specific, type-level programming use cases like comparisons between types from different libraries.
For a simple use cases, consider the castaway
crate, which offers a much
simpler API. On nightly Rust, consider using min_specialization
feature
instead. The Rust standard library already uses min_specialization
for
many optimizations. For a more detailed comparison, see the
Alternative crates section below.
This crate offers a comprehensive API for addressing various specialization challenges, reducing the need for unsafe code. It provides specialization from unconstrained types, to unconstrained types, between 'static types, and between type references and mutable references, and more.
Library tests ensure that specializations are
performed at compile time and are fully optimized with no runtime cost at
opt-level >= 1
. Note that the release profile uses opt-level = 3
by default.
Add this to your Cargo.toml
:
[dependencies]
try-specialize = "0.1.1"
Then, you can use TrySpecialize
trait methods like
TrySpecialize::try_specialize
, TrySpecialize::try_specialize_ref
and
TrySpecialize::try_specialize_static
. To check the possibility of
specialization in advance and use it infallibly multiple times, including
reversed or mapped specialization, use Specialization
struct methods.
Note that unlike casting, subtyping, and coercion, specialization does
not alter the underlying type or data. It merely qualifies the underlying
types of generics, succeeding only when the underlying types of T1
and
T2
are equal.
Specialize type to any LifetimeFree
type:
use try_specialize::TrySpecialize;
fn func<T>(value: T) {
match value.try_specialize::<(u32, String)>() {
Ok(value) => specialized_impl(value),
Err(value) => default_impl(value),
}
}
Specialize 'static
type to any 'static
type:
use try_specialize::TrySpecialize;
fn func<T>(value: T)
where
T: 'static,
{
match value.try_specialize_static::<(u32, &'static str)>() {
Ok(value) => specialized_impl(value),
Err(value) => default_impl(value),
}
}
Specialize Sized
or Unsized
type reference to any LifetimeFree
type
reference:
use try_specialize::TrySpecialize;
fn func<T>(value: &T)
where
T: ?Sized, // Relax the implicit `Sized` bound.
{
match value.try_specialize_ref::<str>() {
Some(value) => specialized_impl(value),
None => default_impl(value),
}
}
Specialize Sized
or Unsized
type mutable reference to any
LifetimeFree
type mutable reference:
use try_specialize::TrySpecialize;
fn func<T>(value: &mut T)
where
T: ?Sized, // Relax the implicit `Sized` bound.
{
match value.try_specialize_mut::<[u8]>() {
Some(value) => specialized_impl(value),
None => default_impl(value),
}
}
Specialize a third-party library container with generic types:
use try_specialize::{Specialization, TypeFn};
fn func<K, V>(value: hashbrown::HashMap<K, V>) {
struct MapIntoHashMap;
impl<K, V> TypeFn<(K, V)> for MapIntoHashMap {
type Output = hashbrown::HashMap<K, V>;
}
if let Some(spec) = Specialization::<(K, V), (u32, char)>::try_new() {
let spec = spec.map::<MapIntoHashMap>();
let value: hashbrown::HashMap<u32, char> = spec.specialize(value);
specialized_impl(value);
} else {
default_impl(value);
}
}
For a more comprehensive example, see the examples/encode.rs
, which
implements custom data encoders and decoders with per-type encoding and
decoding errors and optimized byte array encoding and decoding.
The part of this example related to the Encode
implementation for a slice:
// ...
impl<T> Encode for [T]
where
T: Encode,
{
type EncodeError = T::EncodeError;
#[inline]
fn encode_to<W>(&self, writer: &mut W) -> Result<(), Self::EncodeError>
where
W: ?Sized + Write,
{
if let Some(spec) = Specialization::<[T], [u8]>::try_new() {
// Specialize self from `[T; N]` to `[u32; N]`
let bytes: &[u8] = spec.specialize_ref(self);
// Map type specialization to its associated error specialization.
let spec_err = spec.rev().map::<MapToEncodeError>();
writer
.write_all(bytes)
// Specialize error from `io::Error` to `Self::EncodeError`.
.map_err(|err| spec_err.specialize(err))?;
} else {
for item in self {
item.encode_to(writer)?;
}
}
Ok(())
}
}
// ...
Find values by type in generic composite types:
use try_specialize::{LifetimeFree, TrySpecialize};
pub trait ConsListLookup {
fn find<T>(&self) -> Option<&T>
where
T: ?Sized + LifetimeFree;
}
impl ConsListLookup for () {
#[inline]
fn find<T>(&self) -> Option<&T>
where
T: ?Sized + LifetimeFree,
{
None
}
}
impl<T1, T2> ConsListLookup for (T1, T2)
where
T2: ConsListLookup,
{
#[inline]
fn find<T>(&self) -> Option<&T>
where
T: ?Sized + LifetimeFree,
{
self.0.try_specialize_ref().or_else(|| self.1.find::<T>())
}
}
#[derive(Eq, PartialEq, Debug)]
struct StaticStr(&'static str);
// SAFETY: It is safe to implement `LifetimeFree` for structs with no
// parameters.
unsafe impl LifetimeFree for StaticStr {}
let input = (
123_i32,
(
[1_u32, 2, 3, 4],
(1_i32, (StaticStr("foo"), (('a', false), ()))),
),
);
assert_eq!(input.find::<u32>(), None);
assert_eq!(input.find::<i32>(), Some(&123_i32));
assert_eq!(input.find::<[u32; 4]>(), Some(&[1, 2, 3, 4]));
assert_eq!(input.find::<[u32]>(), None);
assert_eq!(input.find::<StaticStr>(), Some(&StaticStr("foo")));
assert_eq!(input.find::<char>(), None);
assert_eq!(input.find::<(char, bool)>(), Some(&('a', false)));
alloc
(implied bystd
, enabled by default): enablesLifetimeFree
implementations foralloc
types, likeBox
,Arc
,String
,Vec
,BTreeMap
etc.std
(enabled by default): enablesalloc
feature andLifetimeFree
implementations forstd
types, likeOsStr
,Path
,PathBuf
,Instant
,HashMap
etc.unreliable
: enables functions, methods and macros that rely on Rust standard library undocumented behavior. Refer to theunreliable
module documentation for details.
- Type comparison between
'static
types compares theirTypeId::of
s. - Type comparison between unconstrained and
LifetimeFree
type treats them as'static
and compares theirTypeId::of
s. - Specialization relies on type comparison and
transmute_copy
when the equality of types is established. - Unreliable trait implementation checks are performed using an expected,
but undocumented behavior of the Rust stdlib
PartialEq
implementation forArc<T>
.Arc::eq
uses fast path comparing references before comparing data ifT
implementsEq
.
castaway
: A similar crate with a much simpler macro-based API. The macro uses Autoref-Based Specialization and automatically determines the appropriate type of specialization, making it much easier to use. However, if no specialization is applicable because of the same Autoref-Based Specialization, the compiler generates completely unclear errors, which makes it difficult to use it in complex cases. Internally usesunsafe
code for type comparison and specialization.coe-rs
: Smaller and simpler, but supports only static types and don't safely combine type equality check and specialization. Internally usesunsafe
code for type specialization.downcast-rs
: Specialized on trait objects (dyn
) downcasting. Can't be used to specialize unconstrained types.syllogism
andsyllogism_macro
: Requires to provide all possible types to macro that generate a lot of boilerplate code and can't be used to specialize stdlib types because of orphan rules.specialize
: Requires nightly. Adds a simple macro to inline nightlymin_specialization
usage into simpleif let
expressions.specialized-dispatch
: Requires nightly. Adds a macro to inline nightlymin_specialization
usage into amatch
-like macro.spez
: Specializes expression types, using Autoref-Based Specialization. It won't works in generic context but can be used in the code generated by macros.impls
: Determine if a type implements a trait. Can't detect erased type bounds, so not applicable in generic context, but can be used in the code generated by macros.
crate try-specialize |
crate castaway |
crate coe-rs |
crate downcast-rs |
crate syllogism |
min_spec... nightly feature |
crate specialize |
crate spec...ch |
|
---|---|---|---|---|---|---|---|---|
Checked version | 0.1.1 |
0.2.3 |
0.1.2 |
1.2.1 |
0.1.3 |
N/A | 0.0.3 |
0.2.1 |
Rust toolchain | Stable | Stable | Stable | Stable | Stable | Nightly | Nightly | Nightly |
API complexity | Complex | Simple | Simple | Moderate | Simple | Simple | Simple | Simple |
API difficulty | Difficult | Easy | Easy | Moderate | Moderate | Easy | Easy | Moderate |
Zero-cost (compile-time optimized) | YES | YES | YES | no | YES | YES | YES | YES |
Safely combines type eq check and specialization | YES | YES | no | YES | YES | YES | YES | YES |
Specialize value references | YES | YES | YES | N/A | YES | YES | YES | no |
Specialize values | YES | YES | no | N/A | YES | YES | YES | YES |
Specialize values without consume on failure | YES | YES | no | N/A | YES | YES | no | YES |
Limited non-static value specialization | YES | YES | no | N/A | YES | YES | YES | YES |
Full non-static value specialization | no | no | no | N/A | YES | no | no | no |
Specialize trait objects (dyn ) |
N/A | N/A | N/A | YES | N/A | N/A | N/A | N/A |
Compare types without instantiation | YES | no | YES | no | YES | YES | YES | no |
Support std types | YES | YES | YES | YES | no | YES | YES | YES |
Specialize from unconstrained type | YES | YES | no | no | no | YES | YES | YES |
Specialize to unconstrained type | YES | no | no | no | no | YES | YES | YES |
Check generic implements "erased" trait | YES, but unreliable |
no | no | no | no | YES | YES | YES |
Specialize to generic with added bounds | no | no | no | no | no | YES | YES | YES |
API based on | Traits | Macros | Traits | Macros + Traits | Traits | Language | Macros | Macros |
Type comparison implementation based on | TypeId + transmute |
TypeId + transmute |
TypeId |
N/A | Traits | Language | Nightly feature |
Nightly feature |
Type casting implementation based on | transmute_copy |
ptr::read |
transmute |
std::any::Any |
Traits | Language | Nightly feature |
Nightly feature |
Implementation free of unsafe |
no | no | no | YES | YES | YES | YES | YES |
crate use try_specialize::TrySpecialize;
fn spec<T>(value: T) -> Result<u32, T> {
value.try_specialize()
}
assert_eq!(spec(42_u32), Ok(42));
assert_eq!(spec(42_i32), Err(42));
assert_eq!(spec("abc"), Err("abc")); |
crate use castaway::cast;
fn spec<T>(value: T) -> Result<u32, T> {
cast!(value, _)
}
assert_eq!(spec(42_u32), Ok(42));
assert_eq!(spec(42_i32), Err(42));
assert_eq!(spec("abc"), Err("abc")); |
crate use coe::{is_same, Coerce};
// Library don't support non-reference.
// specialization. Using reference.
fn spec<T>(value: &T) -> Option<&u32>
where
// Library don't support specialization of
// unconstrained non-static types.
T: 'static,
{
is_same::<u32, T>().then(|| value.coerce())
}
fn main() {
assert_eq!(spec(&42_u32), Some(&42));
assert_eq!(spec(&42_i32), None);
assert_eq!(spec(&"abc"), None);
} |
crates use downcast_rs::{impl_downcast, DowncastSync};
trait Base: DowncastSync {}
impl_downcast!(sync Base);
// Library requires all specializable
// types to be defined in advance.
impl Base for u32 {}
impl Base for i32 {}
impl Base for &'static str {}
// Library support only trait objects (`dyn`).
fn spec(value: &dyn Base) -> Option<&u32> {
value.downcast_ref::<u32>()
}
fn main() {
assert_eq!(spec(&42_u32), Some(&42));
assert_eq!(spec(&42_i32), None);
assert_eq!(spec(&"abc"), None);
} |
crate // Requires nightly.
#![feature(min_specialization)]
use specialize::constrain;
// Library don't support non-consuming
// value specialization. Using reference.
fn spec<T: ?Sized>(value: &T) -> Option<&u32> {
constrain!(ref value as u32)
}
assert_eq!(spec(&42_u32), Some(&42));
assert_eq!(spec(&42_i32), None);
assert_eq!(spec("abc"), None); |
crate // Requires nightly.
#![feature(min_specialization)]
use specialized_dispatch::specialized_dispatch;
// The library don't support using generics.
// from outer item. Using `Option`.
fn spec<T>(value: T) -> Option<u32> {
specialized_dispatch! {
T -> Option<u32>,
fn (value: u32) => Some(value),
default fn <T>(_: T) => None,
value,
}
}
assert_eq!(spec(42_u32), Some(42));
assert_eq!(spec(42_i32), None);
assert_eq!(spec("abc"), None); |
crates use syllogism::{Distinction, Specialize};
use syllogism_macro::impl_specialization;
// Library specialization can not be
// implemented for std types because of
// orphan rules. Using custom local types.
#[derive(Eq, PartialEq, Debug)]
struct U32(u32);
#[derive(Eq, PartialEq, Debug)]
struct I32(i32);
#[derive(Eq, PartialEq, Debug)]
struct Str<'a>(&'a str);
// Library requires all specializable
// types to be defined in one place.
impl_specialization!(
type U32;
type I32;
type Str<'a>;
);
fn spec<T>(value: T) -> Result<U32, T>
where
T: Specialize<U32>,
{
match value.specialize() {
Distinction::Special(value) => Ok(value),
Distinction::Generic(value) => Err(value),
}
}
assert_eq!(spec(U32(42)), Ok(U32(42)));
assert_eq!(spec(I32(42_i32)), Err(I32(42)));
assert_eq!(spec(Str("abc")), Err(Str("abc"))); |
// Requires nightly.
#![feature(min_specialization)]
// The artificial example looks a bit long.
// More real-world use cases are usually
// on the contrary more clear and understandable.
pub trait Spec: Sized {
fn spec(self) -> Result<u32, Self>;
}
impl<T> Spec for T {
default fn spec(self) -> Result<u32, Self> {
Err(self)
}
}
impl Spec for u32 {
fn spec(self) -> Result<u32, Self> {
Ok(self)
}
}
assert_eq!(Spec::spec(42_u32), Ok(42));
assert_eq!(Spec::spec(42_i32), Err(42));
assert_eq!(Spec::spec("abc"), Err("abc")); |
Licensed under either of
- Apache License, Version 2.0 (LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0)
- MIT license (LICENSE-MIT or https://opensource.org/licenses/MIT)
at your option.
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.