Skip to content

zc-alexfan/render_mano_ih

Repository files navigation

MANO Renderer

A quick-and-dirty script to render hand part segmentation masks from MANO meshes in InterHand2.6M. The segmentations are used in DIGIT.

Before installing, check if you have CUDA 10.1 compiler. If not, the troubleshooting section might be useful.

which nvcc
nvcc --version
> /usr/local/cuda-10.1/bin/nvcc

Setting Up Environment

The code was tested on PyTorch 1.6.0, Python 3.6.12, Ubuntu 20.04.

git clone https://github.com/zc-alexfan/render_mano_ih.git
cd render_mano_ih
git clone https://github.com/zc-alexfan/neural_renderer
conda create -n render.mano python=3.6.12
conda activate render.mano
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch
pip install -r requirements.txt
cd neural_renderer
python setup.py install

Troubleshooting

MAX_GCC_VERSION=8
sudo apt install gcc-$MAX_GCC_VERSION g++-$MAX_GCC_VERSION
sudo ln -s /usr/bin/gcc-$MAX_GCC_VERSION /usr/local/cuda-10.1/bin/gcc
sudo ln -s /usr/bin/g++-$MAX_GCC_VERSION /usr/local/cuda-10.1/bin/g++

Prepare files

cd render_mano_ih
mkdir -p data/InterHand2.6M
cd data/meta_data

Download J_regressor_mano_ih26m.npy to ./data/meta_data/ from here:

https://github.com/facebookresearch/InterHand2.6M/blob/1f11fe90f52bc5205173e07dd3adfe048a8546a9/tool/MANO_world_to_camera/J_regressor_mano_ih26m.npy

Follow the instruction of InterHand2.6M and download its 5fps.v1 of the dataset. Under ./data/InterHand2.6M, put the images and annotation.

The files MANO_*.pkl are the MANO models of SMPLX; you can obtain them here.

The file structure should be like this:

tree ./data
|-- InterHand2.6M
|   |-- annotations
|   `-- images
`-- meta_data
    |-- J_regressor_mano_ih26m.npy
    |-- model
    |   |-- MANO_LEFT.pkl
    |   `-- MANO_RIGHT.pkl
    `-- seale_faces.npy

Inside ./data/annotations it should look like the below:

tree ./data/annotations
|-- skeleton.txt
|-- subject.txt
|-- train
   |-- InterHand2.6M_train_MANO_NeuralAnnot.json
   |-- InterHand2.6M_train_camera.json
   |-- InterHand2.6M_train_data.json
   `-- InterHand2.6M_train_joint_3d.json

Images should be in a structure like this: ./data/InterHand2.6M/images/train/Capture0/0012_aokay_upright/cam400002/*.jpg

Render

# render training segm masks
python main.py

# package segm masks into LMDB for DIGIT
python package_segm_lmdb.py

Acknowledgement

  • The original code was from neural renderer but we use the version from adambielski.
  • Muhammed Kocabas created the original scripts for rendering part segmentation for human body in PARE.
  • We modified the rendering code from PARE to allow MANO rendering.
  • The original part segmentation of hands is from Jinlong Yang.

If you found the code useful, please consider citing:

@inproceedings{kato2018renderer
    title={Neural 3D Mesh Renderer},
    author={Kato, Hiroharu and Ushiku, Yoshitaka and Harada, Tatsuya},
    booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2018}
}

@inproceedings{Kocabas_PARE_2021,
  title = {{PARE}: Part Attention Regressor for {3D} Human Body Estimation},
  author = {Kocabas, Muhammed and Huang, Chun-Hao P. and Hilliges, Otmar and Black, Michael J.},
  booktitle = {Proc. International Conference on Computer Vision (ICCV)},
  pages = {11127--11137},
  month = oct,
  year = {2021},
  doi = {},
  month_numeric = {10}
}

@inproceedings{fan2021digit,
  title={Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-pixel Part Segmentation},
  author={Fan, Zicong and Spurr, Adrian and Kocabas, Muhammed and Tang, Siyu and Black, Michael and Hilliges, Otmar},
  booktitle={International Conference on 3D Vision (3DV)},
  year={2021}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages