Skip to content

zbwglory/kd

Repository files navigation

Action Recognition with Deep Learning

This branch hosts the code for the technical report "Towards Good Practices for Very Deep Two-stream ConvNets", and more.

Updates

  • Sep. 30, 2015
  • Sep. 7, 2015
    • New mechanism for parallel comminucation reduced parallel overhead.
    • Batch normalization, courtesy of @Cysu.

Features

  • VideoDataLayer for inputing video data.
  • Training on optical flow data.
  • Data augmentation with fixed corner cropping and multi-scale cropping.
  • Parallel training with multiple GPUs.
  • cuDNNv3 integration.

Usage

Generally it's the same as the original caffe. Please see the original README. Please see following instruction for accessing features above. More detailed documentation is on the way.

  • Video/optic flow data
    • First use the optical flow extraction tool to convert videos to RGB images and opitcal flow images.
    • A new data layer called VideoDataLayer has been added to support multi-frame input. See the UCF101 sample for how to use it.
    • Note: The VideoDataLayer can only input the optical-flow images generated by the tool listed above.
  • Fixed corner cropping augmentation
    • Set fix_crop to true in tranform_param of network's protocol buffer definition.
  • "Multi-scale" cropping augmentation
    • Set multi_scale to true in transform_param
    • In transform_param, specify scale_ratios as a list of floats smaller than one, default is [1, .875, .75, .65]
    • In transform_param, specify max_distort to an integer, which will limit the aspect ratio distortion, default to 1
  • cuDNN v3
  • Current default config for cuDNNv3 yields a reasonable speed up over cuDNNv2. You can get this by simply replacing the library files.
  • If you have plenty of GPU memory, there is parameter richness in the solver protobuf. Setting it to a number higher than 1, e.g. 10 or 20, will potentially further accelerate the computation, but this will cost a significant amount of GPU memory.
  • Training with multiple GPUs
    • Requires OpenMPI > 1.7.4 (Why?). Remember to compile your OpenMPI with option --with-cuda
    • Specify list of GPU IDs to be used for training, in the solver protocol buffer definition, like device_id: [0,1,2,3]
    • Compile using cmake and use mpirun to launch caffe executable, like
mkdir build && cd build
cmake .. -DUSE_MPI=ON
make && make install
mpirun -np 4 ./install/bin/caffe train --solver=<Your Solver File> [--weights=<Pretrained caffemodel>]

Note: actual batch_size will be num_device times batch_size specified in network's prototxt.

Working Examples

Extension

Currently all existing data layers sub-classed from BasePrefetchingDataLayer support parallel training. If you have newly added layer which is also sub-classed from BasePrefetchingDataLayer, simply implement the virtual method

inline virtual void advance_cursor();

Its function should be forwarding the "data cursor" in your data layer for one step. Then your new layer will be able to provide support for parallel training.

Questions

Contact


Following is the original README of Caffe.

Caffe

Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Center (BVLC) and community contributors.

Check out the project site for all the details like

and step-by-step examples.

Join the chat at https://gitter.im/BVLC/caffe

Please join the caffe-users group or gitter chat to ask questions and talk about methods and models. Framework development discussions and thorough bug reports are collected on Issues.

Happy brewing!

License and Citation

Caffe is released under the BSD 2-Clause license. The BVLC reference models are released for unrestricted use.

Please cite Caffe in your publications if it helps your research:

@article{jia2014caffe,
  Author = {Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff and Karayev, Sergey and Long, Jonathan and Girshick, Ross and Guadarrama, Sergio and Darrell, Trevor},
  Journal = {arXiv preprint arXiv:1408.5093},
  Title = {Caffe: Convolutional Architecture for Fast Feature Embedding},
  Year = {2014}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published