forked from apache/spark
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Travis Galoppo
committed
Oct 30, 2014
1 parent
c7ad085
commit c15405c
Showing
3 changed files
with
325 additions
and
0 deletions.
There are no files selected for viewing
47 changes: 47 additions & 0 deletions
47
examples/src/main/scala/org/apache/spark/examples/mllib/DenseGmmEM.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.examples.mllib | ||
|
||
import org.apache.spark.{SparkConf, SparkContext} | ||
import org.apache.spark.mllib.clustering.GaussianMixtureModel | ||
import org.apache.spark.mllib.clustering.GMMExpectationMaximization | ||
import org.apache.spark.mllib.linalg.Vectors | ||
|
||
object DenseGmmEM { | ||
def main(args: Array[String]): Unit = { | ||
if( args.length != 3 ) { | ||
println("usage: DenseGmmEM <input file> <k> <delta>") | ||
} else { | ||
run(args(0), args(1).toInt, args(2).toDouble) | ||
} | ||
} | ||
|
||
def run(inputFile: String, k: Int, tol: Double) { | ||
val conf = new SparkConf().setAppName("Spark EM Sample") | ||
val ctx = new SparkContext(conf) | ||
|
||
val data = ctx.textFile(inputFile).map(line => | ||
Vectors.dense(line.trim.split(' ').map(_.toDouble))).cache() | ||
|
||
val clusters = GMMExpectationMaximization.train(data, k) | ||
|
||
for(i <- 0 until clusters.k) { | ||
println("w=%f mu=%s sigma=\n%s\n" format (clusters.w(i), clusters.mu(i), clusters.sigma(i))) | ||
} | ||
} | ||
} |
246 changes: 246 additions & 0 deletions
246
mllib/src/main/scala/org/apache/spark/mllib/clustering/GMMExpectationMaximization.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,246 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.mllib.clustering | ||
|
||
import breeze.linalg.{DenseVector => BreezeVector, DenseMatrix => BreezeMatrix} | ||
import breeze.linalg.{Transpose, det, inv} | ||
import org.apache.spark.rdd.RDD | ||
import org.apache.spark.mllib.linalg.{Matrices, Vector, Vectors} | ||
import org.apache.spark.{Accumulator, AccumulatorParam, SparkContext} | ||
import org.apache.spark.SparkContext.DoubleAccumulatorParam | ||
|
||
/** | ||
* Expectation-Maximization for multivariate Gaussian Mixture Models. | ||
* | ||
*/ | ||
object GMMExpectationMaximization { | ||
/** | ||
* Trains a GMM using the given parameters | ||
* | ||
* @param data training points stores as RDD[Vector] | ||
* @param k the number of Gaussians in the mixture | ||
* @param maxIterations the maximum number of iterations to perform | ||
* @param delta change in log-likelihood at which convergence is considered achieved | ||
*/ | ||
def train(data: RDD[Vector], k: Int, maxIterations: Int, delta: Double): GaussianMixtureModel = { | ||
new GMMExpectationMaximization().setK(k) | ||
.setMaxIterations(maxIterations) | ||
.setDelta(delta) | ||
.run(data) | ||
} | ||
|
||
/** | ||
* Trains a GMM using the given parameters | ||
* | ||
* @param data training points stores as RDD[Vector] | ||
* @param k the number of Gaussians in the mixture | ||
* @param maxIterations the maximum number of iterations to perform | ||
*/ | ||
def train(data: RDD[Vector], k: Int, maxIterations: Int): GaussianMixtureModel = { | ||
new GMMExpectationMaximization().setK(k).setMaxIterations(maxIterations).run(data) | ||
} | ||
|
||
/** | ||
* Trains a GMM using the given parameters | ||
* | ||
* @param data training points stores as RDD[Vector] | ||
* @param k the number of Gaussians in the mixture | ||
*/ | ||
def train(data: RDD[Vector], k: Int): GaussianMixtureModel = { | ||
new GMMExpectationMaximization().setK(k).run(data) | ||
} | ||
} | ||
|
||
/** | ||
* This class performs multivariate Gaussian expectation maximization. It will | ||
* maximize the log-likelihood for a mixture of k Gaussians, iterating until | ||
* the log-likelihood changes by less than delta, or until it has reached | ||
* the max number of iterations. | ||
*/ | ||
class GMMExpectationMaximization private ( | ||
private var k: Int, | ||
private var delta: Double, | ||
private var maxIterations: Int) extends Serializable { | ||
|
||
// Type aliases for convenience | ||
private type DenseDoubleVector = BreezeVector[Double] | ||
private type DenseDoubleMatrix = BreezeMatrix[Double] | ||
|
||
// A default instance, 2 Gaussians, 100 iterations, 0.01 log-likelihood threshold | ||
def this() = this(2, 0.01, 100) | ||
|
||
/** Set the number of Gaussians in the mixture model. Default: 2 */ | ||
def setK(k: Int): this.type = { | ||
this.k = k | ||
this | ||
} | ||
|
||
/** Set the maximum number of iterations to run. Default: 100 */ | ||
def setMaxIterations(maxIterations: Int): this.type = { | ||
this.maxIterations = maxIterations | ||
this | ||
} | ||
|
||
/** | ||
* Set the largest change in log-likelihood at which convergence is | ||
* considered to have occurred. | ||
*/ | ||
def setDelta(delta: Double): this.type = { | ||
this.delta = delta | ||
this | ||
} | ||
|
||
/** Machine precision value used to ensure matrix conditioning */ | ||
private val eps = math.pow(2.0, -52) | ||
|
||
/** Perform expectation maximization */ | ||
def run(data: RDD[Vector]): GaussianMixtureModel = { | ||
val ctx = data.sparkContext | ||
|
||
// we will operate on the data as breeze data | ||
val breezeData = data.map{ u => u.toBreeze.toDenseVector }.cache() | ||
|
||
// Get length of the input vectors | ||
val d = breezeData.first.length | ||
|
||
// For each Gaussian, we will initialize the mean as some random | ||
// point from the data. (This could be improved) | ||
val samples = breezeData.takeSample(true, k, scala.util.Random.nextInt) | ||
|
||
// C will be array of (weight, mean, covariance) tuples | ||
// we start with uniform weights, a random mean from the data, and | ||
// identity matrices for covariance | ||
var C = (0 until k).map(i => (1.0/k, | ||
samples(i), | ||
BreezeMatrix.eye[Double](d))).toArray | ||
|
||
val acc_w = new Array[Accumulator[Double]](k) | ||
val acc_mu = new Array[Accumulator[DenseDoubleVector]](k) | ||
val acc_sigma = new Array[Accumulator[DenseDoubleMatrix]](k) | ||
|
||
var llh = Double.MinValue // current log-likelihood | ||
var llhp = 0.0 // previous log-likelihood | ||
|
||
var i, iter = 0 | ||
do { | ||
// reset accumulators | ||
for(i <- 0 until k){ | ||
acc_w(i) = ctx.accumulator(0.0) | ||
acc_mu(i) = ctx.accumulator( | ||
BreezeVector.zeros[Double](d))(DenseDoubleVectorAccumulatorParam) | ||
acc_sigma(i) = ctx.accumulator( | ||
BreezeMatrix.zeros[Double](d,d))(DenseDoubleMatrixAccumulatorParam) | ||
} | ||
|
||
val log_likelihood = ctx.accumulator(0.0) | ||
|
||
// broadcast the current weights and distributions to all nodes | ||
val dists = ctx.broadcast((0 until k).map(i => | ||
new MultivariateGaussian(C(i)._2, C(i)._3)).toArray) | ||
val weights = ctx.broadcast((0 until k).map(i => C(i)._1).toArray) | ||
|
||
// calculate partial assignments for each sample in the data | ||
// (often referred to as the "E" step in literature) | ||
breezeData.foreach(x => { | ||
val p = (0 until k).map(i => | ||
eps + weights.value(i) * dists.value(i).pdf(x)).toArray | ||
val norm = sum(p) | ||
|
||
log_likelihood += math.log(norm) | ||
|
||
// accumulate weighted sums | ||
for(i <- 0 until k){ | ||
p(i) /= norm | ||
acc_w(i) += p(i) | ||
acc_mu(i) += x * p(i) | ||
acc_sigma(i) += x * new Transpose(x) * p(i) | ||
} | ||
}) | ||
|
||
// Collect the computed sums | ||
val W = (0 until k).map(i => acc_w(i).value).toArray | ||
val MU = (0 until k).map(i => acc_mu(i).value).toArray | ||
val SIGMA = (0 until k).map(i => acc_sigma(i).value).toArray | ||
|
||
// Create new distributions based on the partial assignments | ||
// (often referred to as the "M" step in literature) | ||
C = (0 until k).map(i => { | ||
val weight = W(i) / sum(W) | ||
val mu = MU(i) / W(i) | ||
val sigma = SIGMA(i) / W(i) - mu * new Transpose(mu) | ||
(weight, mu, sigma) | ||
}).toArray | ||
|
||
llhp = llh; // current becomes previous | ||
llh = log_likelihood.value // this is the freshly computed log-likelihood | ||
iter += 1 | ||
} while(iter < maxIterations && Math.abs(llh-llhp) > delta) | ||
|
||
// Need to convert the breeze matrices to MLlib matrices | ||
val weights = (0 until k).map(i => C(i)._1).toArray | ||
val means = (0 until k).map(i => Vectors.fromBreeze(C(i)._2)).toArray | ||
val sigmas = (0 until k).map(i => Matrices.fromBreeze(C(i)._3)).toArray | ||
new GaussianMixtureModel(weights, means, sigmas) | ||
} | ||
|
||
/** Sum the values in array of doubles */ | ||
private def sum(x : Array[Double]) : Double = { | ||
var s : Double = 0.0 | ||
x.foreach(u => s += u) | ||
s | ||
} | ||
|
||
/** AccumulatorParam for Dense Breeze Vectors */ | ||
private object DenseDoubleVectorAccumulatorParam extends AccumulatorParam[DenseDoubleVector] { | ||
def zero(initialVector : DenseDoubleVector) : DenseDoubleVector = { | ||
BreezeVector.zeros[Double](initialVector.length) | ||
} | ||
|
||
def addInPlace(a : DenseDoubleVector, b : DenseDoubleVector) : DenseDoubleVector = { | ||
a += b | ||
} | ||
} | ||
|
||
/** AccumulatorParam for Dense Breeze Matrices */ | ||
private object DenseDoubleMatrixAccumulatorParam extends AccumulatorParam[DenseDoubleMatrix] { | ||
def zero(initialVector : DenseDoubleMatrix) : DenseDoubleMatrix = { | ||
BreezeMatrix.zeros[Double](initialVector.rows, initialVector.cols) | ||
} | ||
|
||
def addInPlace(a : DenseDoubleMatrix, b : DenseDoubleMatrix) : DenseDoubleMatrix = { | ||
a += b | ||
} | ||
} | ||
|
||
/** | ||
* Utility class to implement the density function for multivariate Gaussian distribution. | ||
* Breeze provides this functionality, but it requires the Apache Commons Math library, | ||
* so this class is here so-as to not introduce a new dependency in Spark. | ||
*/ | ||
private class MultivariateGaussian(val mu : DenseDoubleVector, val sigma : DenseDoubleMatrix) | ||
extends Serializable { | ||
private val sigma_inv_2 = inv(sigma) * -0.5 | ||
private val U = math.pow(2.0*math.Pi, -mu.length/2.0) * math.pow(det(sigma), -0.5) | ||
|
||
def pdf(x : DenseDoubleVector) : Double = { | ||
val delta = x - mu | ||
val delta_t = new Transpose(delta) | ||
U * math.exp(delta_t * sigma_inv_2 * delta) | ||
} | ||
} | ||
} |
32 changes: 32 additions & 0 deletions
32
mllib/src/main/scala/org/apache/spark/mllib/clustering/GaussianMixtureModel.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.mllib.clustering | ||
|
||
import org.apache.spark.mllib.linalg.Matrix | ||
import org.apache.spark.mllib.linalg.Vector | ||
|
||
/** | ||
* Multivariate Gaussian mixture model consisting of k Gaussians, where points are drawn | ||
* from each Gaussian i=1..k with probability w(i); mu(i) and sigma(i) are the respective | ||
* mean and covariance for each Gaussian distribution i=1..k. | ||
*/ | ||
class GaussianMixtureModel(val w: Array[Double], val mu: Array[Vector], val sigma: Array[Matrix]) { | ||
|
||
/** Number of gaussians in mixture */ | ||
def k: Int = w.length; | ||
} |