Skip to content

Commit

Permalink
[SPARK-1406] Added a PMMLExportable interface
Browse files Browse the repository at this point in the history
Restructured code in a new package mllib.pmml
Supported models implements the new PMMLExportable interface:
LogisticRegression, SVM, KMeansModel, LinearRegression, RidgeRegression,
Lasso
  • Loading branch information
selvinsource committed Feb 8, 2015
1 parent d559ec5 commit 7b33b4e
Show file tree
Hide file tree
Showing 13 changed files with 110 additions and 168 deletions.

This file was deleted.

This file was deleted.

This file was deleted.

Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.mllib.pmml

import java.io.File
import java.io.OutputStream
import java.io.StringWriter
import javax.xml.transform.stream.StreamResult
import org.jpmml.model.JAXBUtil
import org.apache.spark.mllib.pmml.export.PMMLModelExport
import org.apache.spark.mllib.pmml.export.PMMLModelExportFactory

/**
* Export model to the PMML format
* Predictive Model Markup Language (PMML) in an XML-based file format
* developed by the Data Mining Group (www.dmg.org).
*/
trait PMMLExportable {

/**
* Export the model to the stream result in PMML format
*/
private def toPMML(streamResult: StreamResult): Unit = {
val pmmlModelExport = PMMLModelExportFactory.createPMMLModelExport(this)
JAXBUtil.marshalPMML(pmmlModelExport.getPmml(), streamResult)
}

/**
* Export the model to a local File in PMML format
*/
def toPMML(localPath: String): Unit = {
toPMML(new StreamResult(new File(localPath)))
}

/**
* Export the model to the Outputtream in PMML format
*/
def toPMML(outputStream: OutputStream): Unit = {
toPMML(new StreamResult(outputStream))
}

/**
* Export the model to a String in PMML format
*/
def toPMML(): String = {
var writer = new StringWriter();
toPMML(new StreamResult(writer))
return writer.toString();
}

}
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
* limitations under the License.
*/

package org.apache.spark.mllib.export.pmml
package org.apache.spark.mllib.pmml.export

import org.dmg.pmml.DataDictionary
import org.dmg.pmml.DataField
Expand All @@ -29,7 +29,6 @@ import org.dmg.pmml.NumericPredictor
import org.dmg.pmml.OpType
import org.dmg.pmml.RegressionModel
import org.dmg.pmml.RegressionTable

import org.apache.spark.mllib.regression.GeneralizedLinearModel

/**
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
* limitations under the License.
*/

package org.apache.spark.mllib.export.pmml
package org.apache.spark.mllib.pmml.export

import org.dmg.pmml.Array.Type
import org.dmg.pmml.Cluster
Expand All @@ -35,7 +35,6 @@ import org.dmg.pmml.MiningFunctionType
import org.dmg.pmml.MiningSchema
import org.dmg.pmml.OpType
import org.dmg.pmml.SquaredEuclidean

import org.apache.spark.mllib.clustering.KMeansModel

/**
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
* limitations under the License.
*/

package org.apache.spark.mllib.export.pmml
package org.apache.spark.mllib.pmml.export

import org.dmg.pmml.DataDictionary
import org.dmg.pmml.DataField
Expand All @@ -29,8 +29,8 @@ import org.dmg.pmml.NumericPredictor
import org.dmg.pmml.OpType
import org.dmg.pmml.RegressionModel
import org.dmg.pmml.RegressionTable
import org.apache.spark.mllib.classification.LogisticRegressionModel
import org.dmg.pmml.RegressionNormalizationMethodType
import org.apache.spark.mllib.classification.LogisticRegressionModel

/**
* PMML Model Export for LogisticRegressionModel class
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -15,21 +15,17 @@
* limitations under the License.
*/

package org.apache.spark.mllib.export.pmml
package org.apache.spark.mllib.pmml.export

import java.text.SimpleDateFormat
import java.util.Date

import scala.beans.BeanProperty

import org.dmg.pmml.Application
import org.dmg.pmml.Header
import org.dmg.pmml.PMML
import org.dmg.pmml.Timestamp

import org.apache.spark.mllib.export.ModelExport

private[mllib] trait PMMLModelExport extends ModelExport{
private[mllib] trait PMMLModelExport {

/**
* Holder of the exported model in PMML format
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -15,30 +15,23 @@
* limitations under the License.
*/

package org.apache.spark.mllib.export
package org.apache.spark.mllib.pmml.export

import org.apache.spark.mllib.classification.LogisticRegressionModel
import org.apache.spark.mllib.classification.SVMModel
import org.apache.spark.mllib.clustering.KMeansModel
import org.apache.spark.mllib.export.ModelExportType.ModelExportType
import org.apache.spark.mllib.export.ModelExportType.PMML
import org.apache.spark.mllib.export.pmml.GeneralizedLinearPMMLModelExport
import org.apache.spark.mllib.export.pmml.KMeansPMMLModelExport
import org.apache.spark.mllib.export.pmml.LogisticRegressionPMMLModelExport
import org.apache.spark.mllib.regression.LassoModel
import org.apache.spark.mllib.regression.LinearRegressionModel
import org.apache.spark.mllib.regression.RidgeRegressionModel

private[mllib] object ModelExportFactory {
private[mllib] object PMMLModelExportFactory {

/**
* Factory object to help creating the necessary ModelExport implementation
* taking as input the ModelExportType (for example PMML)
* and the machine learning model (for example KMeansModel).
* Factory object to help creating the necessary PMMLModelExport implementation
* taking as input the machine learning model (for example KMeansModel).
*/
def createModelExport(model: Any, exportType: ModelExportType): ModelExport = {
return exportType match{
case PMML => model match{
def createPMMLModelExport(model: Any): PMMLModelExport = {
return model match{
case kmeans: KMeansModel =>
new KMeansPMMLModelExport(kmeans)
case linearRegression: LinearRegressionModel =>
Expand All @@ -54,10 +47,8 @@ private[mllib] object ModelExportFactory {
case logisticRegression: LogisticRegressionModel =>
new LogisticRegressionPMMLModelExport(logisticRegression, "logistic regression")
case _ =>
throw new IllegalArgumentException("Export not supported for model: " + model.getClass)
}
case _ => throw new IllegalArgumentException("Export type not supported:" + exportType)
}
throw new IllegalArgumentException("PMML Export not supported for model: " + model.getClass)
}
}

}
Original file line number Diff line number Diff line change
Expand Up @@ -15,14 +15,11 @@
* limitations under the License.
*/

package org.apache.spark.mllib.export.pmml
package org.apache.spark.mllib.pmml.export

import org.dmg.pmml.RegressionModel
import org.scalatest.FunSuite

import org.apache.spark.mllib.classification.SVMModel
import org.apache.spark.mllib.export.ModelExportFactory
import org.apache.spark.mllib.export.ModelExportType
import org.apache.spark.mllib.regression.LassoModel
import org.apache.spark.mllib.regression.LinearRegressionModel
import org.apache.spark.mllib.regression.RidgeRegressionModel
Expand All @@ -41,7 +38,7 @@ class GeneralizedLinearPMMLModelExportSuite extends FunSuite{
val svmModel = new SVMModel(linearInput(0).features, linearInput(0).label);

//act by exporting the model to the PMML format
val linearModelExport = ModelExportFactory.createModelExport(linearRegressionModel, ModelExportType.PMML)
val linearModelExport = PMMLModelExportFactory.createPMMLModelExport(linearRegressionModel)
//assert that the PMML format is as expected
assert(linearModelExport.isInstanceOf[PMMLModelExport])
var pmml = linearModelExport.asInstanceOf[PMMLModelExport].getPmml()
Expand All @@ -54,7 +51,7 @@ class GeneralizedLinearPMMLModelExportSuite extends FunSuite{
.getRegressionTables().get(0).getNumericPredictors().size() === linearRegressionModel.weights.size)

//act
val ridgeModelExport = ModelExportFactory.createModelExport(ridgeRegressionModel, ModelExportType.PMML)
val ridgeModelExport = PMMLModelExportFactory.createPMMLModelExport(ridgeRegressionModel)
//assert that the PMML format is as expected
assert(ridgeModelExport.isInstanceOf[PMMLModelExport])
pmml = ridgeModelExport.asInstanceOf[PMMLModelExport].getPmml()
Expand All @@ -67,7 +64,7 @@ class GeneralizedLinearPMMLModelExportSuite extends FunSuite{
.getRegressionTables().get(0).getNumericPredictors().size() === ridgeRegressionModel.weights.size)

//act
val lassoModelExport = ModelExportFactory.createModelExport(lassoModel, ModelExportType.PMML)
val lassoModelExport = PMMLModelExportFactory.createPMMLModelExport(lassoModel)
//assert that the PMML format is as expected
assert(lassoModelExport.isInstanceOf[PMMLModelExport])
pmml = lassoModelExport.asInstanceOf[PMMLModelExport].getPmml()
Expand All @@ -80,7 +77,7 @@ class GeneralizedLinearPMMLModelExportSuite extends FunSuite{
.getRegressionTables().get(0).getNumericPredictors().size() === lassoModel.weights.size)

//act
val svmModelExport = ModelExportFactory.createModelExport(svmModel, ModelExportType.PMML)
val svmModelExport = PMMLModelExportFactory.createPMMLModelExport(svmModel)
//assert that the PMML format is as expected
assert(svmModelExport.isInstanceOf[PMMLModelExport])
pmml = svmModelExport.asInstanceOf[PMMLModelExport].getPmml()
Expand All @@ -93,10 +90,10 @@ class GeneralizedLinearPMMLModelExportSuite extends FunSuite{
.getRegressionTables().get(0).getNumericPredictors().size() === svmModel.weights.size)

//manual checking
//ModelExporter.toPMML(linearRegressionModel,"/tmp/linearregression.xml")
//ModelExporter.toPMML(ridgeRegressionModel,"/tmp/ridgeregression.xml")
//ModelExporter.toPMML(lassoModel,"/tmp/lassoregression.xml")
//ModelExporter.toPMML(svmModel,"/tmp/linearsvm.xml")
//linearRegressionModel.toPMML("/tmp/linearregression.xml")
//ridgeRegressionModel.toPMML("/tmp/ridgeregression.xml")
//lassoModel.toPMML("/tmp/lassoregression.xml")
//svmModel.toPMML("/tmp/linearsvm.xml")

}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -15,14 +15,11 @@
* limitations under the License.
*/

package org.apache.spark.mllib.export.pmml
package org.apache.spark.mllib.pmml.export

import org.dmg.pmml.ClusteringModel
import org.scalatest.FunSuite

import org.apache.spark.mllib.clustering.KMeansModel
import org.apache.spark.mllib.export.ModelExportFactory
import org.apache.spark.mllib.export.ModelExportType
import org.apache.spark.mllib.linalg.Vectors

class KMeansPMMLModelExportSuite extends FunSuite{
Expand All @@ -38,7 +35,7 @@ class KMeansPMMLModelExportSuite extends FunSuite{
val kmeansModel = new KMeansModel(clusterCenters);

//act by exporting the model to the PMML format
val modelExport = ModelExportFactory.createModelExport(kmeansModel, ModelExportType.PMML)
val modelExport = PMMLModelExportFactory.createPMMLModelExport(kmeansModel)

//assert that the PMML format is as expected
assert(modelExport.isInstanceOf[PMMLModelExport])
Expand All @@ -51,8 +48,9 @@ class KMeansPMMLModelExportSuite extends FunSuite{
assert(pmml.getModels().get(0).asInstanceOf[ClusteringModel].getNumberOfClusters() === clusterCenters.size)

//manual checking
//ModelExporter.toPMML(kmeansModel,new StreamResult(System.out))
//ModelExporter.toPMML(kmeansModel,"/tmp/kmeans.xml")
//kmeansModel.toPMML("/tmp/kmeans.xml")
//kmeansModel.toPMML(System.out)
//System.out.println(kmeansModel.toPMML())

}

Expand Down
Loading

0 comments on commit 7b33b4e

Please sign in to comment.