forked from cms-sw/cmssw
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request cms-sw#75 from CMS-HGCAL/hgcal-condformat-HGCalNAN…
…O-13_2_0_pre3_feat add example
- Loading branch information
Showing
1 changed file
with
116 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
import os | ||
import ROOT | ||
import pandas as pd | ||
import numpy as np | ||
import re | ||
|
||
basedir='/eos/cms/store/group/dpg_hgcal/comm_hgcal/2023/CMSSW/ReReco_Sep26/' | ||
pedestal_run=f'{basedir}/Run1695716961/d1643b06-5cc3-11ee-bee0-fa163e17e03d' | ||
#mip_run=f'{basedir}/Run1695563673/c6adb2e6-5cc3-11ee-bee0-fa163e17e03d' | ||
#mip_run=f'{basedir}/Run1695564190/c713c360-5cc3-11ee-bee0-fa163e17e03d' | ||
mip_run=f'{basedir}/Run1695564694/c764c29c-5cc3-11ee-bee0-fa163e17e03d' | ||
#mip_run=f'{basedir}/Run1695565177/c7d12c48-5cc3-11ee-bee0-fa163e17e03d' | ||
#mip_run=f'{basedir}Run1695565613/c82c5db6-5cc3-11ee-bee0-fa163e17e03d' | ||
selection_metric='NoiseRatio' | ||
|
||
def findCandidateChannels(ped,mip,metric='NoiseRatio'): | ||
|
||
""" reads the DQM outputs and selects the channel for which std(mip)/std(ped) has increased the most """ | ||
|
||
|
||
def _setChannelModule(df): | ||
|
||
"""helper function to uniformize channel""" | ||
|
||
#string to integer | ||
df['Channel'] = df['Channel'].apply(lambda x: int(x, 16)) | ||
|
||
#in case it's not a DTH run the modules come as two separate FEDs | ||
df['Channel'] = np.where(df['Channel']>0x40000, | ||
df['Channel']-0x40000+0x400, | ||
df['Channel']) | ||
|
||
#assign a module number fo grouping | ||
df['Module'] = np.where((df['Channel']<0x400),1,2) | ||
df=df.astype({'Module':int}) | ||
|
||
return df | ||
|
||
|
||
#merge mip and pedestal summaries | ||
columns=['Channel','Pedestal','Noise'] | ||
ped_df=pd.read_csv(ped,sep='\s+',header='infer')[columns] | ||
ped_df=_setChannelModule(ped_df) | ||
mip_df=pd.read_csv(mip,sep='\s+',header='infer')[columns] | ||
mip_df=_setChannelModule(mip_df) | ||
df=mip_df.merge(ped_df,on='Channel',suffixes=('', '_ped')) | ||
|
||
#remove dead channels | ||
mask=(df['Noise']==0) | (df['Noise_ped']==0) | ||
df=df[~mask].copy() | ||
df['NoiseRatio'] = df['Noise']/df['Noise_ped'] | ||
|
||
#select channels of interest | ||
max_var_channels = df.groupby(['Module'])[metric].idxmax().values | ||
mip_spot_channels = df.iloc[max_var_channels][['Channel','Module','Pedestal_ped','NoiseRatio','Noise']] | ||
print(f'Identified two possible candidates for MIP spots by {metric}') | ||
print(mip_spot_channels.head()) | ||
|
||
return mip_spot_channels | ||
|
||
|
||
mip_spot_channels=findCandidateChannels(ped=f'{pedestal_run}/calibs/level0_calib_params.txt', | ||
mip=f'{mip_run}/calibs/level0_calib_params.txt', | ||
metric=selection_metric) | ||
chlist=mip_spot_channels['Channel'].values | ||
pedlist=mip_spot_channels['Pedestal_ped'].values | ||
modlist=mip_spot_channels['Module'].values | ||
|
||
#select in NANOAOD, subtract pedestals and draw the MIP peak | ||
flist=[os.path.join(mip_run,f) for f in os.listdir(mip_run) if 'NANO' in f] | ||
|
||
ROOT.ROOT.EnableImplicitMT() | ||
|
||
df=ROOT.RDataFrame('Events',flist) | ||
|
||
chlist=mip_spot_channels['Channel'].values | ||
chsel = ' || '. join( [f'HGC_eleid=={ch}' for ch in chlist] ) | ||
df=df.Define('goodch',chsel).Filter('Sum(goodch)==2') | ||
|
||
pedlist=mip_spot_channels['Pedestal_ped'].values | ||
histos=[] | ||
for i in range(len(chlist)): | ||
pedval=pedlist[i] | ||
h = df.Define(f'goodch_ADC{i}',f'HGC_adc[goodch][{i}]-{pedval}') \ | ||
.Histo1D( (f'adc{i}',f'Module {modlist[i]};ADC counts;Events',50,0,50), f'goodch_ADC{i}') | ||
histos.append(h.GetPtr()) | ||
|
||
ROOT.ROOT.DisableImplicitMT() | ||
|
||
|
||
#plot | ||
ROOT.gStyle.SetOptStat(0); | ||
ROOT.gStyle.SetTextFont(42) | ||
ROOT.gStyle.SetOptTitle(0) | ||
c = ROOT.TCanvas("c", "c", 800, 800) | ||
c.SetTopMargin(0.05) | ||
c.SetLeftMargin(0.12) | ||
c.SetRightMargin(0.05) | ||
frame=histos[0].Clone('frame') | ||
frame.Reset('ICE') | ||
frame.Draw() | ||
run_number=re.findall('Run(\d+)',mip_run)[0] | ||
leg=ROOT.TLegend(0.6,0.7,0.95,0.95,f'Run {run_number}') | ||
leg.SetFillStyle(0) | ||
leg.SetBorderSize(0) | ||
for i,h in enumerate(histos): | ||
h.Draw('histsame') | ||
h.SetLineWidth(2) | ||
h.SetLineColor(i+1) | ||
leg.AddEntry(h,h.GetTitle(),'l') | ||
frame.GetYaxis().SetRangeUser(1,1e6) | ||
c.SetLogy() | ||
leg.Draw() | ||
c.Modified() | ||
c.Update() | ||
c.SaveAs(f'/eos/user/p/psilva/www/HGCAL/NanoAOD/mip_{run_number}_{selection_metric}.png') |