Simple helper library to convert numpy data to tfrecord and build a tensorflow dataset.
$ git clone git@github.com:yonetaniryo/numpy2tfrecord.git
$ cd numpy2tfrecord
$ pip install .
or simply using pip:
$ pip install numpy2tfrecord
You can convert samples represented in the form of a dict
to tf.train.Example
and save them as a tfrecord.
import numpy as np
from numpy2tfrecord import Numpy2TFRecordConverter
with Numpy2TFRecordConverter("test.tfrecord") as converter:
x = np.arange(100).reshape(10, 10).astype(np.float32) # float array
y = np.arange(100).reshape(10, 10).astype(np.int64) # int array
a = 5 # int
b = 0.3 # float
sample = {"x": x, "y": y, "a": a, "b": b}
converter.convert_sample(sample) # convert data sample
You can also convert a list
of samples at once using convert_list
.
with Numpy2TFRecordConverter("test.tfrecord") as converter:
samples = [
{
"x": np.random.rand(64).astype(np.float32),
"y": np.random.randint(0, 10),
}
for _ in range(32)
] # list of 32 samples
converter.convert_list(samples)
Or a batch of samples at once using convert_batch
.
with Numpy2TFRecordConverter("test.tfrecord") as converter:
samples = {
"x": np.random.rand(32, 64).astype(np.float32),
"y": np.random.randint(0, 10, size=32).astype(np.int64),
} # batch of 32 samples
converter.convert_batch(samples)
So what are the advantages of Numpy2TFRecordConverter
compared to tf.data.datset.from_tensor_slices
?
Simply put, when using tf.data.dataset.from_tensor_slices
, all the samples that will be converted to a dataset must be in memory.
On the other hand, you can use Numpy2TFRecordConverter
to sequentially add samples to the tfrecord without having to read all of them into memory beforehand..
Samples once stored in the tfrecord can be streamed using tf.data.TFRecordDataset
.
from numpy2tfrecord import build_dataset_from_tfrecord
dataset = build_dataset_from_tfrecord("test.tfrecord")
The dataset can then be used directly in the for-loop of machine learning.
for batch in dataset.as_numpy_iterator():
x, y = batch.values()
...
https://gist.github.com/yonetaniryo/c1780e58b841f30150c45233d3fe6d01
import os
import time
import numpy as np
from numpy2tfrecord import Numpy2TfrecordConverter, build_dataset_from_tfrecord
import torch
from torchvision import datasets, transforms
dataset = datasets.MNIST(".", download=True, transform=transforms.ToTensor())
# convert to tfrecord
with Numpy2TfrecordConverter("mnist.tfrecord") as converter:
converter.convert_batch({"x": dataset.data.numpy().astype(np.int64),
"y": dataset.targets.numpy().astype(np.int64)})
torch_loader = torch.utils.data.DataLoader(dataset, batch_size=32, pin_memory=True, num_workers=os.cpu_count())
tic = time.time()
for e in range(5):
for batch in torch_loader:
x, y = batch
elapsed = time.time() - tic
print(f"elapsed time with pytorch dataloader: {elapsed:0.2f} sec for 5 epochs")
tf_loader = build_dataset_from_tfrecord("mnist.tfrecord").batch(32).prefetch(1)
tic = time.time()
for e in range(5):
for batch in tf_loader.as_numpy_iterator():
x, y = batch.values()
elapsed = time.time() - tic
print(f"elapsed time with tf dataloader: {elapsed:0.2f} sec for 5 epochs")
⬇️
elapsed time with pytorch dataloader: 41.10 sec for 5 epochs
elapsed time with tf dataloader: 17.34 sec for 5 epochs