date: 2021/3/3(Updated 2021/3/3)
auther: YW YSZ
List of abbreviations:
Abbreviations | ReW | TrL | MeL | DeL | Aug | SeSu | OtM |
---|---|---|---|---|---|---|---|
Full names | Re-weighting | Transfer Learning | Meta Learning | Decoupling Learning | Data Augmentation | Self-Supervised Learning | Other methods |
Dataset | Year | Images(Triain/Val/Test) | Classes | Max images | Min images | Imbalance factor | Reported by |
---|---|---|---|---|---|---|---|
CIFAR-LT-10 | 2019 | 50000–11203/--/10000 | 10 | 5,000 | 500–25 | 1.0–200.0 | Source |
CIFAR-LT-100 | 2019 | 50000–9502/--/10000 | 100 | 500 | 500–2 | 1.0–200.0 | Source |
ImageNet-LT | 2019 | 115846/20000/50000 | 1000 | 1280 | 5 | 256.0 | Source |
Places-LT | 2019 | 62500/7300/36500 | 365 | 4980 | 5 | 996.0 | Source |
iNat 2017 | 2017 | 579184/95986/-- | 5089 | 3919 | 9 | 435.4 | Source |
iNat 2018 | 2018 | 437513/24426/-- | 8142 | 1000 | 2 | 500.0 | Source |
Evaluation metric: classification error rate.
IF
represents Imbalance factor
.
Method | Venue | Year | Backbone | Type | IF=10 | IF=50 | IF=100 | Code | Reported by |
---|---|---|---|---|---|---|---|---|---|
Class-Balanced Loss | CVPR | 2019 | ResNet-32 | ReW | 12.51 | 20.73 | 25.43 | ---- | Source |
LDAM-DRW | NeurIPS | 2019 | ResNet-32 | ReW | 11.84 | ----- | 22.97 | ---- | Source |
MW-Net | NeurIPS | 2019 | ResNet-32 | ReW/MeL | 12.16 | 19.94 | 24.79 | ---- | Source |
LDAM-M2m | CVPR | 2020 | ResNet-32 | TrL | 12.5 | ----- | 20.9 | ----- | Source |
BBN | CVPR | 2020 | ResNet-32 | DeL | 11.68 | 17.82 | 20.18 | ---- | Source |
CBasDA-LDAM | CVPR | 2020 | ResNet-32 | ReW | 12.6 | 17.77 | 22.77 | ---- | Source |
Balanced Softmax | ECCV-Workshop | 2020 | ResNet-32 | OtM | 9.1 | ----- | 16.9 | ---- | Source |
De-confound-TDE | NeurIPS | 2020 | ResNet-32 | OtM | 11.5 | 16.4 | 19.4 | ---- | Source |
BALMS | NeurIPS | 2020 | ResNet-32 | ReW | 8.7 | ----- | 15.1 | ---- | Source |
LDAM-DRW + SSP | NeurIPS | 2020 | ResNet-32 | SeSu | 11.47 | 17.87 | 22.17 | ---- | Source |
Baseline + tricks | AAAI | 2021 | ResNet-32 | OtM | ----- | 16.41 | 19.97 | ---- | Source |
Remix-DRW | ECCV-Workshop | 2020 | ResNet-32 | Aug | 10.98 | ----- | 20.24 | ---- | Source |
Method | Venue | Year | Backbone | Type | IF=10 | IF=50 | IF=100 | Code | Reported by |
---|---|---|---|---|---|---|---|---|---|
FSA | ECCV | 2020 | ResNet-18 | Aug | 8.25 | 15.29 | 19.43 | ---- | Source |
Method | Venue | Year | Backbone | Type | IF=10 | IF=50 | IF=100 | Code | Reported by |
---|---|---|---|---|---|---|---|---|---|
FSA | ECCV | 2020 | ResNet-34 | Aug | 8.8 | 15.51 | 17.94 | ---- | Source |
Evaluation metric: classification error rate.
Method | Venue | Year | Backbone | Type | IF=10 | IF=50 | IF=100 | Code | Reported by |
---|---|---|---|---|---|---|---|---|---|
Class-Balanced Loss | CVPR | 2019 | ResNet-32 | ReW | 42.01 | 54.68 | 60.40 | ---- | Source |
LDAM-DRW | NeurIPS | 2019 | ResNet-32 | ReW | 41.29 | ----- | 57.96 | ---- | Source |
MW-Net | NeurIPS | 2019 | ResNet-32 | ReW/MeL | 41.54 | 53.26 | 57.91 | ---- | Source |
LDAM-M2m | CVPR | 2020 | ResNet-32 | TrL | 42.4 | ----- | 56.5 | ----- | Source |
BBN | CVPR | 2020 | ResNet-32 | DeL | 40.88 | 52.98 | 57.44 | ---- | Source |
CBasDA-LDAM | CVPR | 2020 | ResNet-32 | ReW | 42.0 | 50.84 | 60.47 | ---- | Source |
LFME+LDAM | ECCV | 2020 | ResNet-32 | TrL | ----- | ----- | 56.2 | ---- | Source |
Balanced Softmax | ECCV-Workshop | 2020 | ResNet-32 | OtM | 36.9 | ----- | 49.7 | ---- | Source |
De-confound-TDE | NeurIPS | 2020 | ResNet-32 | OtM | 40.4 | 49.7 | 55.9 | ---- | Source |
BALMS | NeurIPS | 2020 | ResNet-32 | ReW | 37.0 | ----- | 49.2 | ---- | Source |
LDAM-DRW + SSP | NeurIPS | 2020 | ResNet-32 | SeSu | 41.09 | 52.89 | 56.57 | ---- | Source |
Baseline + tricks | AAAI | 2021 | ResNet-32 | OtM | ----- | 48.31 | 52.17 | ---- | Source |
Remix-DRW | ECCV-Workshop | 2020 | ResNet-32 | Aug | 38.77 | ----- | 53.23 | ---- | Source |
Method | Venue | Year | Backbone | Type | IF=10 | IF=50 | IF=100 | Code | Reported by |
---|---|---|---|---|---|---|---|---|---|
FSA | ECCV | 2020 | ResNet-18 | Aug | 34.92 | 48.1 | 53.43 | ---- | Source |
Method | Venue | Year | Backbone | Type | IF=10 | IF=50 | IF=100 | Code | Reported by |
---|---|---|---|---|---|---|---|---|---|
FSA | ECCV | 2020 | ResNet-34 | Aug | 34.71 | 47.83 | 51.49 | ---- | Source |
Evaluation metric: closed-set setting/Top-1 classification accuracy.
Method | Venue | Year | Backbone | Type | Many-Shot | Medium-Shot | Few-Shot | ALL | Code | Reported by |
---|---|---|---|---|---|---|---|---|---|---|
OLTR | CVPR | 2019 | ResNet-10 | TrL | 43.2 | 35.1 | 18.5 | 35.6 | ---- | Source |
LWS | ICLR | 2020 | ResNet-10 | DeL | ----- | ----- | ---- | 41.4 | ---- | Source |
IEM | CVPR | 2020 | ResNet-10 | OtM | 48.9 | 44.0 | 24.4 | 43.2 | ---- | Source |
LFME+OLTR | ECCV | 2020 | ResNet-10 | TrL | 47.0 | 37.9 | 19.2 | 38.8 | ---- | Source |
FSA | ECCV | 2020 | ResNet-10 | Aug | 47.3 | 31.6 | 14.7 | 35.2 | ---- | Source |
BALMS | NeurIPS | 2020 | ResNet-10 | ReW | 50.3 | 39.5 | 25.3 | 41.8 | ---- | Source |
cRT + SSP | NeurIPS | 2020 | ResNet-10 | SeSu | ----- | ----- | ---- | 43.2 | ---- | Source |
Baseline + tricks | AAAI | 2021 | ResNet-10 | OtM | ----- | ----- | ---- | 43.31 | ---- | Source |
Method | Venue | Year | Backbone | Type | Many-Shot | Medium-Shot | Few-Shot | ALL | Code | Reported by |
---|---|---|---|---|---|---|---|---|---|---|
LWS | ICLR | 2020 | ResNeXt-50 | DeL | 60.2 | 47.2 | 30.3 | 49.9 | ---- | Source |
Method | Venue | Year | Backbone | Type | Many-Shot | Medium-Shot | Few-Shot | ALL | Code | Reported by |
---|---|---|---|---|---|---|---|---|---|---|
LWS | ICLR | 2020 | ResNeXt-152 | DeL | 63.5 | 50.4 | 34.2 | 53.3 | ---- | Source |
Evaluation metric: closed-set setting/Top-1 classification accuracy.
Method | Venue | Year | Backbone | Type | Many-Shot | Medium-Shot | Few-Shot | ALL | Code | Reported by |
---|---|---|---|---|---|---|---|---|---|---|
OLTR | CVPR | 2019 | ResNet-152 | TrL | 44.7 | 37 | 25.3 | 35.9 | ---- | Source |
LWS | ICLR | 2020 | ResNet-152 | DeL | 40.6 | 39.1 | 28.6 | 37.6 | ---- | Source |
τ -normalized | ICLR | 2020 | ResNet-152 | DeL | 37.8 | 40.7 | 31.8 | 37.9 | ---- | Source |
IEM | CVPR | 2020 | ResNet-152 | OtM | 46.8 | 39.2 | 28.0 | 39.7 | ---- | Source |
LFME+OLTR | ECCV | 2020 | ResNet-152 | TrL | 39.3 | 39.6 | 24.2 | 36.2 | ---- | Source |
FSA | ECCV | 2020 | ResNet-152 | Aug | 42.8 | 37.5 | 22.7 | 36.4 | ---- | Source |
Method | Venue | Year | Backbone | Type | Many-Shot | Medium-Shot | Few-Shot | ALL | Code | Reported by |
---|---|---|---|---|---|---|---|---|---|---|
BALMS | NeurIPS | 2020 | ResNet-10 | ReW | 41.2 | 39.8 | 31.6 | 38.7 | ---- |
Evaluation metric: Top-1 classification accuracy
Method | Venue | Year | Backbone | Type | iNat-2017(Top1) | iNat-2018(Top1) | Code | Reported by |
---|---|---|---|---|---|---|---|---|
CB Focal | CVPR | 2019 | ResNet-50 | ReW | 58.08 | 61.12 | ---- | Source |
LWS | ICLR | 2020 | ResNet-50 | DeL | ----- | 65.9/69.5 (90/200) | ---- | Source |
IEM | CVPR | 2020 | ResNet-50 | OtM | ----- | 70.2 | ---- | Source |
BBN | CVPR | 2020 | ResNet-50 | DeL | 63.39 | 66.29 | ---- | Source |
BBN(2×) | CVPR | 2020 | ResNet-50 | DeL | 65.75 | 69.62 | ---- | Source |
CBasDA-CE | CVPR | 2020 | ResNet-50 | ReW | 59.38 | 67.55 | ---- | Source |
FSA | ECCV | 2020 | ResNet-50 | Aug | 61.96 | 65.91 | ---- | Source |
cRT + SSP | NeurIPS | 2020 | ResNet-50 | SeSu | ----- | 68.1 | ---- | Source |
Baseline + tricks | AAAI | 2021 | ResNet-50 | OtM | ----- | 70.87 | ---- | Source |
Remix-DRS | ECCV-Workshop | 2020 | ResNet-50 | Aug | ----- | 70.74 | ---- | Source |
Method | Venue | Year | Backbone | Type | iNat-2017(Top1) | iNat-2018(Top1) | Code | Reported by |
---|---|---|---|---|---|---|---|---|
CB Focal | CVPR | 2019 | ResNet-152 | ReW | 61.84 | 64.16 | ---- | Source |
LWS | ICLR | 2020 | ResNet-152 | DeL | ----- | 69.1/72.1 (90/200) | ---- | Source |
FSA | ECCV | 2020 | ResNet-152 | Aug | 66.58 | 69.08 | ---- | Source |
Yan Wang : yanwang@smail.nju.edu.cn
Yongshun Zhang: zhangys@lamda.nju.edu.cn
- Shu et.al., Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting, NeurIPS 2019.
- Cao et.al., Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss, NeurIPS 2019.
- Cui et.al., Class-Balanced Loss Based on Effective Number of Samples, CVPR 2019.
- Tang et.al., Long-Tailed Classification by Keeping the Good and Removing the Bad Momentum Causal Effect, NeurIPS 2020.
- Yang et.al., Rethinking the Value of Labels for Improving Class-Imbalanced Learning, NeurIPS 2020.
- Ren et.al., Balanced Meta-Softmax for Long-Tailed Visual Recognition, NeurIPS 2020.
- Kang et.al., Decoupling Representation and Classifier for Long-Tailed Recognition, ICLR 2020.
- Kim et.al., M2m: Imbalanced Classification via Major-to-minor Translation, CVPR 2020.
- Zhou et.al., BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition, CVPR 2020.
- Jamal et.al., Rethinking Class-Balanced Methods for Long-Tailed Visual Recognition from a Domain Adaptation Perspective, CVPR 2020.
- Zhu et.al., Inflated Episodic Memory with Region Self-Attention for Long-Tailed Visual Recognition, CVPR 2020.
- Liu et.al., Large-Scale Long-Tailed Recognition in an Open World, CVPR 2019.
- Xiang et.al., Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification, ECCV 2020.
- Chu et.al., Feature Space Augmentation for Long-Tailed Data, ECCV 2020.
- Ren et.al., Balanced Activation for Long-tailed Visual Recognition, ECCV 2020.
- Chou et.al., Remix: Rebalanced Mixup, ECCV'2020 Workshop.
- Zhang et.al., Bag of Tricks for Long-Tailed Visual Recognition with Deep Convolutional Neural Networks, AAAI 2021.