Skip to content

Commit

Permalink
Format Templates (langchain-ai#12396)
Browse files Browse the repository at this point in the history
  • Loading branch information
efriis authored Oct 27, 2023
1 parent 25c98db commit 4b16601
Show file tree
Hide file tree
Showing 59 changed files with 791 additions and 432 deletions.
8 changes: 7 additions & 1 deletion templates/Makefile
Original file line number Diff line number Diff line change
@@ -1,2 +1,8 @@
lint lint_diff:
poetry run ruff .
poetry run poe lint

test:
poetry run poe test

format:
poetry run poe format
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
from langchain.schema.runnable import ConfigurableField

from .chain import chain
from .retriever_agent import executor
from .chain import chain

final_chain = chain.configurable_alternatives(
ConfigurableField(id="chain"),
Expand Down
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
from langchain.prompts import ChatPromptTemplate
from langchain.chat_models import ChatAnthropic
from langchain.prompts import ChatPromptTemplate
from langchain.schema.output_parser import StrOutputParser

from .prompts import answer_prompt
Expand Down
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
from langchain.schema.agent import AgentAction, AgentFinish
import re

from langchain.schema.agent import AgentAction, AgentFinish

from .agent_scratchpad import _format_docs


Expand All @@ -14,18 +15,23 @@ def extract_between_tags(tag: str, string: str, strip: bool = True) -> str:
# Only return the first one
return ext_list[0]


def parse_output(outputs):
partial_completion = outputs["partial_completion"]
steps = outputs["intermediate_steps"]
search_query = extract_between_tags('search_query', partial_completion + '</search_query>')
search_query = extract_between_tags(
"search_query", partial_completion + "</search_query>"
)
if search_query is None:
docs = []
str_output = ""
for action, observation in steps:
docs.extend(observation)
str_output += action.log
str_output += '</search_query>' + _format_docs(observation)
str_output += "</search_query>" + _format_docs(observation)
str_output += partial_completion
return AgentFinish({"docs": docs, "output": str_output}, log=partial_completion)
else:
return AgentAction(tool="search", tool_input=search_query, log=partial_completion)
return AgentAction(
tool="search", tool_input=search_query, log=partial_completion
)
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,6 @@
After each call to the Search Engine Tool, reflect briefly inside <search_quality></search_quality> tags about whether you now have enough information to answer, or whether more information is needed. If you have all the relevant information, write it in <information></information> tags, WITHOUT actually answering the question. Otherwise, issue a new search.
Here is the user's question: <question>{query}</question> Remind yourself to make short queries in your scratchpad as you plan out your strategy."""
Here is the user's question: <question>{query}</question> Remind yourself to make short queries in your scratchpad as you plan out your strategy.""" # noqa: E501

answer_prompt = "Here is a user query: <query>{query}</query>. Here is some relevant information: <information>{information}</information>. Please answer the question using the relevant information."
answer_prompt = "Here is a user query: <query>{query}</query>. Here is some relevant information: <information>{information}</information>. Please answer the question using the relevant information." # noqa: E501
Original file line number Diff line number Diff line change
Expand Up @@ -3,13 +3,14 @@

# This is used to tell the model how to best use the retriever.

retriever_description = """You will be asked a question by a human user. You have access to the following tool to help answer the question. <tool_description> Search Engine Tool * The search engine will exclusively search over Wikipedia for pages similar to your query. It returns for each page its title and full page content. Use this tool if you want to get up-to-date and comprehensive information on a topic to help answer queries. Queries should be as atomic as possible -- they only need to address one part of the user's question. For example, if the user's query is "what is the color of a basketball?", your search query should be "basketball". Here's another example: if the user's question is "Who created the first neural network?", your first query should be "neural network". As you can see, these queries are quite short. Think keywords, not phrases. * At any time, you can make a call to the search engine using the following syntax: <search_query>query_word</search_query>. * You'll then get results back in <search_result> tags.</tool_description>"""
retriever_description = """You will be asked a question by a human user. You have access to the following tool to help answer the question. <tool_description> Search Engine Tool * The search engine will exclusively search over Wikipedia for pages similar to your query. It returns for each page its title and full page content. Use this tool if you want to get up-to-date and comprehensive information on a topic to help answer queries. Queries should be as atomic as possible -- they only need to address one part of the user's question. For example, if the user's query is "what is the color of a basketball?", your search query should be "basketball". Here's another example: if the user's question is "Who created the first neural network?", your first query should be "neural network". As you can see, these queries are quite short. Think keywords, not phrases. * At any time, you can make a call to the search engine using the following syntax: <search_query>query_word</search_query>. * You'll then get results back in <search_result> tags.</tool_description>""" # noqa: E501

retriever = WikipediaRetriever()

# This should be the same as the function name below
RETRIEVER_TOOL_NAME = "search"


@tool
def search(query):
"""Search with the retriever."""
Expand Down
Original file line number Diff line number Diff line change
@@ -1,13 +1,13 @@
from langchain.agents import AgentExecutor
from langchain.chat_models import ChatAnthropic
from langchain.prompts import ChatPromptTemplate
from langchain.schema.runnable import RunnablePassthrough, RunnableMap
from langchain.schema.output_parser import StrOutputParser
from langchain.agents import AgentExecutor
from langchain.schema.runnable import RunnableMap, RunnablePassthrough

from .retriever import search, RETRIEVER_TOOL_NAME, retriever_description
from .prompts import retrieval_prompt
from .agent_scratchpad import format_agent_scratchpad
from .output_parser import parse_output
from .prompts import retrieval_prompt
from .retriever import retriever_description, search

prompt = ChatPromptTemplate.from_messages([
("user", retrieval_prompt),
Expand Down
14 changes: 10 additions & 4 deletions templates/anthropic-iterative-search/main.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,12 @@
from anthropic_iterative_search import final_chain

from anthropic_iterative_search import final_chain

if __name__ == "__main__":
query = "Which movie came out first: Oppenheimer, or Are You There God It's Me Margaret?"
print(final_chain.with_config(configurable={"chain": "retrieve"}).invoke({"query": query}))
query = (
"Which movie came out first: Oppenheimer, or "
"Are You There God It's Me Margaret?"
)
print(
final_chain.with_config(configurable={"chain": "retrieve"}).invoke(
{"query": query}
)
)
Original file line number Diff line number Diff line change
@@ -1,14 +1,12 @@
import os

import cassio

from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Cassandra
from langchain.prompts import ChatPromptTemplate
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.output_parser import StrOutputParser

from langchain.schema.runnable import RunnablePassthrough
from langchain.vectorstores import Cassandra

use_cassandra = int(os.environ.get("USE_CASSANDRA_CLUSTER", "0"))
if use_cassandra:
Expand Down
Original file line number Diff line number Diff line change
@@ -1,13 +1,13 @@
import os

from cassandra.cluster import Cluster
from cassandra.auth import PlainTextAuthProvider
from cassandra.cluster import Cluster


def get_cassandra_connection():
contact_points = [
cp.strip()
for cp in os.environ.get("CASSANDRA_CONTACT_POINTS", "").split(',')
for cp in os.environ.get("CASSANDRA_CONTACT_POINTS", "").split(",")
if cp.strip()
]
CASSANDRA_KEYSPACE = os.environ["CASSANDRA_KEYSPACE"]
Expand All @@ -22,6 +22,8 @@ def get_cassandra_connection():
else:
auth_provider = None

c_cluster = Cluster(contact_points if contact_points else None, auth_provider=auth_provider)
c_cluster = Cluster(
contact_points if contact_points else None, auth_provider=auth_provider
)
session = c_cluster.connect()
return (session, CASSANDRA_KEYSPACE)
20 changes: 8 additions & 12 deletions templates/cassandra-entomology-rag/setup.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,13 @@
import os

import cassio

from langchain.vectorstores import Cassandra
from langchain.embeddings import OpenAIEmbeddings

from langchain.vectorstores import Cassandra

use_cassandra = int(os.environ.get("USE_CASSANDRA_CLUSTER", "0"))
if use_cassandra:
from cassandra_entomology_rag.cassandra_cluster_init import get_cassandra_connection

session, keyspace = get_cassandra_connection()
cassio.init(
session=session,
Expand All @@ -22,7 +21,7 @@
)


if __name__ == '__main__':
if __name__ == "__main__":
embeddings = OpenAIEmbeddings()
vector_store = Cassandra(
session=None,
Expand All @@ -32,16 +31,13 @@
)
#
lines = [
l.strip()
for l in open("sources.txt").readlines()
if l.strip()
if l[0] != "#"
line.strip()
for line in open("sources.txt").readlines()
if line.strip()
if line[0] != "#"
]
# deterministic IDs to prevent duplicates on multiple runs
ids = [
"_".join(l.split(" ")[:2]).lower().replace(":", "")
for l in lines
]
ids = ["_".join(line.split(" ")[:2]).lower().replace(":", "") for line in lines]
#
vector_store.add_texts(texts=lines, ids=ids)
print(f"Done ({len(lines)} lines inserted).")
Original file line number Diff line number Diff line change
@@ -1,13 +1,12 @@
import os

import cassio

import langchain
from langchain.schema import BaseMessage
from langchain.prompts import ChatPromptTemplate
from langchain.cache import CassandraCache
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.schema import BaseMessage
from langchain.schema.runnable import RunnableLambda
from langchain.cache import CassandraCache

use_cassandra = int(os.environ.get("USE_CASSANDRA_CLUSTER", "0"))
if use_cassandra:
Expand Down
Original file line number Diff line number Diff line change
@@ -1,13 +1,13 @@
import os

from cassandra.cluster import Cluster
from cassandra.auth import PlainTextAuthProvider
from cassandra.cluster import Cluster


def get_cassandra_connection():
contact_points = [
cp.strip()
for cp in os.environ.get("CASSANDRA_CONTACT_POINTS", "").split(',')
for cp in os.environ.get("CASSANDRA_CONTACT_POINTS", "").split(",")
if cp.strip()
]
CASSANDRA_KEYSPACE = os.environ["CASSANDRA_KEYSPACE"]
Expand All @@ -22,6 +22,8 @@ def get_cassandra_connection():
else:
auth_provider = None

c_cluster = Cluster(contact_points if contact_points else None, auth_provider=auth_provider)
c_cluster = Cluster(
contact_points if contact_points else None, auth_provider=auth_provider
)
session = c_cluster.connect()
return (session, CASSANDRA_KEYSPACE)
57 changes: 33 additions & 24 deletions templates/csv-agent/csv_agent/agent.py
Original file line number Diff line number Diff line change
@@ -1,24 +1,25 @@
from langchain.agents import OpenAIFunctionsAgent, AgentExecutor
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_experimental.tools import PythonAstREPLTool
from pathlib import Path

import pandas as pd
from langchain.agents import AgentExecutor, OpenAIFunctionsAgent
from langchain.chat_models import ChatOpenAI
from langsmith import Client
from langchain.smith import RunEvalConfig, run_on_dataset
from pydantic import BaseModel, Field
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.tools.retriever import create_retriever_tool
from pathlib import Path
from langchain.vectorstores import FAISS
from langchain_experimental.tools import PythonAstREPLTool
from pydantic import BaseModel, Field

MAIN_DIR = Path(__file__).parents[1]

pd.set_option('display.max_rows', 20)
pd.set_option('display.max_columns', 20)
pd.set_option("display.max_rows", 20)
pd.set_option("display.max_columns", 20)

embedding_model = OpenAIEmbeddings()
vectorstore = FAISS.load_local(MAIN_DIR / "titanic_data", embedding_model)
retriever_tool = create_retriever_tool(vectorstore.as_retriever(), "person_name_search", "Search for a person by name")
retriever_tool = create_retriever_tool(
vectorstore.as_retriever(), "person_name_search", "Search for a person by name"
)


TEMPLATE = """You are working with a pandas dataframe in Python. The name of the dataframe is `df`.
Expand All @@ -41,8 +42,7 @@
<question>Who has id 320</question>
<logic>Use `python_repl` since even though the question is about a person, you don't know their name so you can't include it.</logic>
"""

""" # noqa: E501


class PythonInputs(BaseModel):
Expand All @@ -52,15 +52,24 @@ class PythonInputs(BaseModel):
df = pd.read_csv("titanic.csv")
template = TEMPLATE.format(dhead=df.head().to_markdown())

prompt = ChatPromptTemplate.from_messages([
("system", template),
MessagesPlaceholder(variable_name="agent_scratchpad"),
("human", "{input}")
])

repl = PythonAstREPLTool(locals={"df": df}, name="python_repl",
description="Runs code and returns the output of the final line",
args_schema=PythonInputs)
prompt = ChatPromptTemplate.from_messages(
[
("system", template),
MessagesPlaceholder(variable_name="agent_scratchpad"),
("human", "{input}"),
]
)

repl = PythonAstREPLTool(
locals={"df": df},
name="python_repl",
description="Runs code and returns the output of the final line",
args_schema=PythonInputs,
)
tools = [repl, retriever_tool]
agent = OpenAIFunctionsAgent(llm=ChatOpenAI(temperature=0, model="gpt-4"), prompt=prompt, tools=tools)
agent_executor = AgentExecutor(agent=agent, tools=tools, max_iterations=5, early_stopping_method="generate")
agent = OpenAIFunctionsAgent(
llm=ChatOpenAI(temperature=0, model="gpt-4"), prompt=prompt, tools=tools
)
agent_executor = AgentExecutor(
agent=agent, tools=tools, max_iterations=5, early_stopping_method="generate"
)
1 change: 0 additions & 1 deletion templates/csv-agent/ingest.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
from langchain.document_loaders import CSVLoader
from langchain.tools.retriever import create_retriever_tool
from langchain.indexes import VectorstoreIndexCreator
from langchain.vectorstores import FAISS

Expand Down
Original file line number Diff line number Diff line change
@@ -1,11 +1,12 @@
import os
from pathlib import Path

from elasticsearch import Elasticsearch
from langchain.chat_models import ChatOpenAI
from langchain.output_parsers.json import SimpleJsonOutputParser
from elasticsearch import Elasticsearch
from pathlib import Path

from .prompts import DSL_PROMPT
from .elastic_index_info import get_indices_infos
from .prompts import DSL_PROMPT

es_host = os.environ["ELASTIC_SEARCH_SERVER"]
es_password = os.environ["ELASTIC_PASSWORD"]
Expand Down
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
from typing import List


def _list_indices(database, include_indices=None, ignore_indices=None) -> List[str]:
all_indices = [
index["index"] for index in database.cat.indices(format="json")
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,6 @@
Question: Question here
ESQuery: Elasticsearch Query formatted as json
"""
""" # noqa: E501

DSL_PROMPT = PromptTemplate.from_template(DEFAULT_DSL_TEMPLATE + PROMPT_SUFFIX)
1 change: 1 addition & 0 deletions templates/elastic-query-generator/ingest.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import os

from elasticsearch import Elasticsearch

es_host = os.environ["ELASTIC_SEARCH_SERVER"]
Expand Down
1 change: 0 additions & 1 deletion templates/elastic-query-generator/main.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
from elastic_query_generator.chain import chain


if __name__ == "__main__":
print(chain.invoke({"input": "how many customers named Carol"}))
Loading

0 comments on commit 4b16601

Please sign in to comment.