Multi-Objective Evolutionary Algorithms in Julia
- NSGA-II
- MOEA/D
- MOEA/D-DE
- MOEA/D-DRA
- MOEA/D-AWA
- SMS-EMOA
- ZDT
- DTLZ
- WFG
- IGD
- Hypervolume
ga = GA(populationSize=100,
selection=susinv,
mutation=BGA(ones(2)),
crossover=DC)
result = optimize(sphere,
ga,
population = [Individual([2.0, 2.0]) for i in 1:ga.populationSize])
zdt, bounds, truepf = ZDT1()
constraints = BoxConstraints(bounds[1,:], bounds[2,:])
method = MOEAD(N=100)
moead = optimize(zdt,
moead,
constraints = constraints,
population = [Individual(rand(30)) for i in 1:100])
julia -e 'import Pkg; Pkg.activate(pwd()); Pkg.test()'