Skip to content
/ MOEA.jl Public

Multi-Objective Evolutionary Algorithms in Julia

License

Notifications You must be signed in to change notification settings

xh4/MOEA.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MOEA

Multi-Objective Evolutionary Algorithms in Julia

GUI

Algorithms

  • NSGA-II
  • MOEA/D
  • MOEA/D-DE
  • MOEA/D-DRA
  • MOEA/D-AWA
  • SMS-EMOA

Problems

  • ZDT
  • DTLZ
  • WFG

Indicators

  • IGD
  • Hypervolume

GA

ga = GA(populationSize=100,
	selection=susinv,
	mutation=BGA(ones(2)),
	crossover=DC)

result = optimize(sphere,
                  ga,
		  population = [Individual([2.0, 2.0]) for i in 1:ga.populationSize])

MOEA/D

zdt, bounds, truepf = ZDT1()

constraints = BoxConstraints(bounds[1,:], bounds[2,:])

method = MOEAD(N=100)

moead = optimize(zdt,
		 moead,
		 constraints = constraints,
		 population = [Individual(rand(30)) for i in 1:100])

Test

julia -e 'import Pkg; Pkg.activate(pwd()); Pkg.test()'