Skip to content

xc308/XC_Work

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Highly Multivariate Large-scale Spatial Stochastic Processes -- A Cross-Markov Random Field Approach

This repo contains the code for the manuscript, entitled "Highly Multivariate Large-scale Spatial Stochastic Processes -- A Cross-Markov Random Field Approach", by Xiaoqing Chen, Peter Diggle, James.V.Zideck, Gavin Shaddick.

We propose a cross-MRF model class, consisting of a mixed spatial graphical model framework and a cross-MRF theory to address various challenges of highly multivariate large-scale spatial data collectively within one unified framework.

The core contribution of the cross-MRF theory is that it realises doubly conditional independence (CI) among both p variates and n spatial locations, see here.

We achieved:

  • utmost sparsity in the joint precision matrix
  • lowest generation order of the joint precision matrix
  • asymmetric cross-correlation in the joint covariance matrix
  • scientific interpretability

[Comparative study results] [Models comparison] [Asymmetry and sparsity]

Scripts Contents

  • GPU folder: auto-correlation matrix and cross-correlation matrix plots

  • Figure folder: Sigma, Sigma_inv plots, p = 10, CI among p only; CAMS denoising plot

  • 032c: Tst9c, 1D SG and SG_inv construction, Matern, CI among p only (non-cross-MRF), SpN + Reg, thres = 1e-3, reg_num = 1e-9 (Test construction joint Sigma and Sigma_inv; p = 6, n = 40; p = 10, n = 400, 600, 800; exact zero percentage CI among p only)

  • 032d: 1D simulation plots functions for non-cross-MRF, C.I. among p only; (Plot joint Sigma and Sigma_inv; p = 6, n = 40)

  • 032e: 1D SG, SG_inv construction, CI among p only (p = 10, n = 40, 400, 600, 800; elapsed system wall time, CI among p only)

  • 032f: SG, SG_inv plots (p = 10)

  • 034b: SG_inv construction, sparse percentage comparison among cross-MRF and non-cross-MRF for Tri-Wave and Wendland; (Percentage of exact-zero entries; elapsed system wall time cross-MRF)

  • 034c: Tst10c, 1D SG_inv construction, cross-MRF, with SpNorm + Reg for b function, b can be chosen; (Joint Sigma_inv plots, p = 6)

  • 034e: CI among n only, Mardia 1988; p =10, n = 400, 600, 800, 1000 (Exact-zero percentage; fully-connected graph reach memory limit)

  • 037: 100 randomly evaluated Sigma_inv generation microbenchmark; (Sigma and Sigma_inv generation time)

  • 046b: generate 1D true processes and noisy data, Tri-Wave and Wendland

  • 046c: generate 2D true processes and noisy data, Tri-Wave and Wendland - consistent relationship between sparsity in uni-SG_inv and joint SG_inv

  • 047b: optimization, Tri-Wave, Tst10c (cross-MRF)

  • 047c: optimization, Wendland, Tst10c (cross-MRF)

  • 048b: co-krig, Tri-Wave, 1 fold C.V. results

  • 048d: co-krig, Wendland, 1 fold C.V. results

  • 049: neg_logL function of non-cross-MRF, TST9d

  • 049b: optimization using 049, Tri-Wave, Wendland

  • 055: 2D inference (neg_logL_2D, optim) for 6 fields in Fig12, Tri-Wave (converged), Wendland (converged)

  • 056: 2D cokrig (pure denoising)

  • 057: Data processing, generate df_Res_log_16_sorted, sorted by Lon (asc), then by Lat (desc); 4 Lon strips

  • 059: TST12 GPU version

  • 060: GPU parallel + optim on 1 CPU

  • 061: GPU parallel + optim on 4 CPUs

  • 062: pure optim parallel on 51 CPUs, no GPU parallelisation

  • 063: CAMS data processing

  • 064a: CAMS data with 060, GPU parallel + optim on 1 CPU, Lon_Strip_1

  • 064b: CAMS data with 060, GPU parallel + optim on 1 CPU, Lon_Strip_4

  • 065a: CAMS one complete construction time for SG, and SG_inv, with GPU off-loading, df_Lon_Strip_1_Sort_new.rds;(real-world data illustration)

  • 065b: CAMS data denoising

  • 065c: Plot of CAMS 5

  • 066a: CAMS one complete construction time for SG, and SG_inv, solo CPU, df_Lon_Strip_1_Sort_new.rds;(real-world data illustration)

Acknowledgements

  • Iain Steison recommended using optimParallel() for parallel L-BFGS-B optimization on the CPU.
  • David Llewellyn-Jones helped set up the HPC resource and answered lots of elementary questions regarding Baskerville HPC.
  • Ryan Chan reminded XC that traditional R code will not automatically utilize GPU resources even when run on HPC.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages