forked from Project-MONAI/MONAI
-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: add
clDice
loss (Project-MONAI#6763)
Fixes Project-MONAI#5938 ### Description This PR aims to add the `SoftclDiceLoss` and the `SoftDiceclDiceLoss` from [clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation](https://openaccess.thecvf.com/content/CVPR2021/papers/Shit_clDice_-_A_Novel_Topology-Preserving_Loss_Function_for_Tubular_Structure_CVPR_2021_paper.pdf) ### Types of changes <!--- Put an `x` in all the boxes that apply, and remove the not applicable items --> - [x] Non-breaking change (fix or new feature that would not break existing functionality). - [ ] Breaking change (fix or new feature that would cause existing functionality to change). - [x] New tests added to cover the changes. - [ ] Integration tests passed locally by running `./runtests.sh -f -u --net --coverage`. - [ ] Quick tests passed locally by running `./runtests.sh --quick --unittests --disttests`. - [x] In-line docstrings updated. - [ ] Documentation updated, tested `make html` command in the `docs/` folder. --------- Signed-off-by: Saurav Maheshkar <sauravvmaheshkar@gmail.com>
- Loading branch information
1 parent
28c9083
commit 2800a76
Showing
3 changed files
with
241 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,184 @@ | ||
# Copyright (c) MONAI Consortium | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import annotations | ||
|
||
import torch | ||
import torch.nn.functional as F | ||
from torch.nn.modules.loss import _Loss | ||
|
||
|
||
def soft_erode(img: torch.Tensor) -> torch.Tensor: # type: ignore | ||
""" | ||
Perform soft erosion on the input image | ||
Args: | ||
img: the shape should be BCH(WD) | ||
Adapted from: | ||
https://github.com/jocpae/clDice/blob/master/cldice_loss/pytorch/soft_skeleton.py#L6 | ||
""" | ||
if len(img.shape) == 4: | ||
p1 = -(F.max_pool2d(-img, (3, 1), (1, 1), (1, 0))) | ||
p2 = -(F.max_pool2d(-img, (1, 3), (1, 1), (0, 1))) | ||
return torch.min(p1, p2) # type: ignore | ||
elif len(img.shape) == 5: | ||
p1 = -(F.max_pool3d(-img, (3, 1, 1), (1, 1, 1), (1, 0, 0))) | ||
p2 = -(F.max_pool3d(-img, (1, 3, 1), (1, 1, 1), (0, 1, 0))) | ||
p3 = -(F.max_pool3d(-img, (1, 1, 3), (1, 1, 1), (0, 0, 1))) | ||
return torch.min(torch.min(p1, p2), p3) # type: ignore | ||
|
||
|
||
def soft_dilate(img: torch.Tensor) -> torch.Tensor: # type: ignore | ||
""" | ||
Perform soft dilation on the input image | ||
Args: | ||
img: the shape should be BCH(WD) | ||
Adapted from: | ||
https://github.com/jocpae/clDice/blob/master/cldice_loss/pytorch/soft_skeleton.py#L18 | ||
""" | ||
if len(img.shape) == 4: | ||
return F.max_pool2d(img, (3, 3), (1, 1), (1, 1)) # type: ignore | ||
elif len(img.shape) == 5: | ||
return F.max_pool3d(img, (3, 3, 3), (1, 1, 1), (1, 1, 1)) # type: ignore | ||
|
||
|
||
def soft_open(img: torch.Tensor) -> torch.Tensor: | ||
""" | ||
Wrapper function to perform soft opening on the input image | ||
Args: | ||
img: the shape should be BCH(WD) | ||
Adapted from: | ||
https://github.com/jocpae/clDice/blob/master/cldice_loss/pytorch/soft_skeleton.py#L25 | ||
""" | ||
eroded_image = soft_erode(img) | ||
dilated_image = soft_dilate(eroded_image) | ||
return dilated_image | ||
|
||
|
||
def soft_skel(img: torch.Tensor, iter_: int) -> torch.Tensor: | ||
""" | ||
Perform soft skeletonization on the input image | ||
Adapted from: | ||
https://github.com/jocpae/clDice/blob/master/cldice_loss/pytorch/soft_skeleton.py#L29 | ||
Args: | ||
img: the shape should be BCH(WD) | ||
iter_: number of iterations for skeletonization | ||
Returns: | ||
skeletonized image | ||
""" | ||
img1 = soft_open(img) | ||
skel = F.relu(img - img1) | ||
for _ in range(iter_): | ||
img = soft_erode(img) | ||
img1 = soft_open(img) | ||
delta = F.relu(img - img1) | ||
skel = skel + F.relu(delta - skel * delta) | ||
return skel | ||
|
||
|
||
def soft_dice(y_true: torch.Tensor, y_pred: torch.Tensor, smooth: float = 1.0) -> torch.Tensor: | ||
""" | ||
Function to compute soft dice loss | ||
Adapted from: | ||
https://github.com/jocpae/clDice/blob/master/cldice_loss/pytorch/cldice.py#L22 | ||
Args: | ||
y_true: the shape should be BCH(WD) | ||
y_pred: the shape should be BCH(WD) | ||
Returns: | ||
dice loss | ||
""" | ||
intersection = torch.sum((y_true * y_pred)[:, 1:, ...]) | ||
coeff = (2.0 * intersection + smooth) / (torch.sum(y_true[:, 1:, ...]) + torch.sum(y_pred[:, 1:, ...]) + smooth) | ||
soft_dice: torch.Tensor = 1.0 - coeff | ||
return soft_dice | ||
|
||
|
||
class SoftclDiceLoss(_Loss): | ||
""" | ||
Compute the Soft clDice loss defined in: | ||
Shit et al. (2021) clDice -- A Novel Topology-Preserving Loss Function | ||
for Tubular Structure Segmentation. (https://arxiv.org/abs/2003.07311) | ||
Adapted from: | ||
https://github.com/jocpae/clDice/blob/master/cldice_loss/pytorch/cldice.py#L7 | ||
""" | ||
|
||
def __init__(self, iter_: int = 3, smooth: float = 1.0) -> None: | ||
""" | ||
Args: | ||
iter_: Number of iterations for skeletonization | ||
smooth: Smoothing parameter | ||
""" | ||
super().__init__() | ||
self.iter = iter_ | ||
self.smooth = smooth | ||
|
||
def forward(self, y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor: | ||
skel_pred = soft_skel(y_pred, self.iter) | ||
skel_true = soft_skel(y_true, self.iter) | ||
tprec = (torch.sum(torch.multiply(skel_pred, y_true)[:, 1:, ...]) + self.smooth) / ( | ||
torch.sum(skel_pred[:, 1:, ...]) + self.smooth | ||
) | ||
tsens = (torch.sum(torch.multiply(skel_true, y_pred)[:, 1:, ...]) + self.smooth) / ( | ||
torch.sum(skel_true[:, 1:, ...]) + self.smooth | ||
) | ||
cl_dice: torch.Tensor = 1.0 - 2.0 * (tprec * tsens) / (tprec + tsens) | ||
return cl_dice | ||
|
||
|
||
class SoftDiceclDiceLoss(_Loss): | ||
""" | ||
Compute the Soft clDice loss defined in: | ||
Shit et al. (2021) clDice -- A Novel Topology-Preserving Loss Function | ||
for Tubular Structure Segmentation. (https://arxiv.org/abs/2003.07311) | ||
Adapted from: | ||
https://github.com/jocpae/clDice/blob/master/cldice_loss/pytorch/cldice.py#L38 | ||
""" | ||
|
||
def __init__(self, iter_: int = 3, alpha: float = 0.5, smooth: float = 1.0) -> None: | ||
""" | ||
Args: | ||
iter_: Number of iterations for skeletonization | ||
smooth: Smoothing parameter | ||
alpha: Weighing factor for cldice | ||
""" | ||
super().__init__() | ||
self.iter = iter_ | ||
self.smooth = smooth | ||
self.alpha = alpha | ||
|
||
def forward(self, y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor: | ||
dice = soft_dice(y_true, y_pred, self.smooth) | ||
skel_pred = soft_skel(y_pred, self.iter) | ||
skel_true = soft_skel(y_true, self.iter) | ||
tprec = (torch.sum(torch.multiply(skel_pred, y_true)[:, 1:, ...]) + self.smooth) / ( | ||
torch.sum(skel_pred[:, 1:, ...]) + self.smooth | ||
) | ||
tsens = (torch.sum(torch.multiply(skel_true, y_pred)[:, 1:, ...]) + self.smooth) / ( | ||
torch.sum(skel_true[:, 1:, ...]) + self.smooth | ||
) | ||
cl_dice = 1.0 - 2.0 * (tprec * tsens) / (tprec + tsens) | ||
total_loss: torch.Tensor = (1.0 - self.alpha) * dice + self.alpha * cl_dice | ||
return total_loss |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
# You may obtain a copy of the License at | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import annotations | ||
|
||
import unittest | ||
|
||
import numpy as np | ||
import torch | ||
from parameterized import parameterized | ||
|
||
from monai.losses import SoftclDiceLoss, SoftDiceclDiceLoss | ||
|
||
TEST_CASES = [ | ||
[ # shape: (1, 4), (1, 4) | ||
{"y_pred": torch.ones((100, 3, 256, 256)), "y_true": torch.ones((100, 3, 256, 256))}, | ||
0.0, | ||
], | ||
[ # shape: (1, 5), (1, 5) | ||
{"y_pred": torch.ones((100, 3, 256, 256, 5)), "y_true": torch.ones((100, 3, 256, 256, 5))}, | ||
0.0, | ||
], | ||
] | ||
|
||
|
||
class TestclDiceLoss(unittest.TestCase): | ||
@parameterized.expand(TEST_CASES) | ||
def test_result(self, y_pred_data, expected_val): | ||
loss = SoftclDiceLoss() | ||
loss_dice = SoftDiceclDiceLoss() | ||
result = loss(**y_pred_data) | ||
result_dice = loss_dice(**y_pred_data) | ||
np.testing.assert_allclose(result.detach().cpu().numpy(), expected_val, atol=1e-4, rtol=1e-4) | ||
np.testing.assert_allclose(result_dice.detach().cpu().numpy(), expected_val, atol=1e-4, rtol=1e-4) | ||
|
||
def test_with_cuda(self): | ||
loss = SoftclDiceLoss() | ||
loss_dice = SoftDiceclDiceLoss() | ||
i = torch.ones((100, 3, 256, 256)) | ||
j = torch.ones((100, 3, 256, 256)) | ||
if torch.cuda.is_available(): | ||
i = i.cuda() | ||
j = j.cuda() | ||
output = loss(i, j) | ||
output_dice = loss_dice(i, j) | ||
np.testing.assert_allclose(output.detach().cpu().numpy(), 0.0, atol=1e-4, rtol=1e-4) | ||
np.testing.assert_allclose(output_dice.detach().cpu().numpy(), 0.0, atol=1e-4, rtol=1e-4) | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |