Skip to content

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.

License

Notifications You must be signed in to change notification settings

wuhuikai/FastFCN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation

[Project] [Paper] [arXiv] [Home]

PWC

Official implementation of FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.
A Faster, Stronger and Lighter framework for semantic segmentation, achieving the state-of-the-art performance and more than 3x acceleration.

@inproceedings{wu2019fastfcn,
  title     = {FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation},
  author    = {Wu, Huikai and Zhang, Junge and Huang, Kaiqi and Liang, Kongming and Yu Yizhou},
  booktitle = {arXiv preprint arXiv:1903.11816},
  year = {2019}
}

Contact: Hui-Kai Wu (huikaiwu@icloud.com)

Update

2020-04-15: Now support inference on a single image !!!

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m experiments.segmentation.test_single_image --dataset [pcontext|ade20k] \
    --model [encnet|deeplab|psp] --jpu [JPU|JPU_X] \
    --backbone [resnet50|resnet101] [--ms] --resume {MODEL} --input-path {INPUT} --save-path {OUTPUT}

2020-04-15: New joint upsampling module is now available !!!

  • --jpu [JPU|JPU_X]: JPU is the original module in the arXiv paper; JPU_X is a pyramid version of JPU.

2020-02-20: FastFCN can now run on every OS with PyTorch>=1.1.0 and Python==3.*.*

  • Replace all C/C++ extensions with pure python extensions.

Version

  1. Original code, producing the results reported in the arXiv paper. [branch:v1.0.0]
  2. Pure PyTorch code, with torch.nn.DistributedDataParallel and torch.nn.SyncBatchNorm. [branch:latest]
  3. Pure Python code. [branch:master]

Overview

Framework

Joint Pyramid Upsampling (JPU)

Install

  1. PyTorch >= 1.1.0 (Note: The code is test in the environment with python=3.6, cuda=9.0)
  2. Download FastFCN
    git clone https://github.com/wuhuikai/FastFCN.git
    cd FastFCN
    
  3. Install Requirements
    nose
    tqdm
    scipy
    cython
    requests
    

Train and Test

PContext

python -m scripts.prepare_pcontext
Method Backbone mIoU FPS Model Scripts
EncNet ResNet-50 49.91 18.77
EncNet+JPU (ours) ResNet-50 51.05 37.56 GoogleDrive bash
PSP ResNet-50 50.58 18.08
PSP+JPU (ours) ResNet-50 50.89 28.48 GoogleDrive bash
DeepLabV3 ResNet-50 49.19 15.99
DeepLabV3+JPU (ours) ResNet-50 50.07 20.67 GoogleDrive bash
EncNet ResNet-101 52.60 (MS) 10.51
EncNet+JPU (ours) ResNet-101 54.03 (MS) 32.02 GoogleDrive bash

ADE20K

python -m scripts.prepare_ade20k

Training Set

Method Backbone mIoU (MS) Model Scripts
EncNet ResNet-50 41.11
EncNet+JPU (ours) ResNet-50 42.75 GoogleDrive bash
EncNet ResNet-101 44.65
EncNet+JPU (ours) ResNet-101 44.34 GoogleDrive bash

Training Set + Val Set

Method Backbone FinalScore (MS) Model Scripts
EncNet+JPU (ours) ResNet-50 GoogleDrive bash
EncNet ResNet-101 55.67
EncNet+JPU (ours) ResNet-101 55.84 GoogleDrive bash

Note: EncNet (ResNet-101) is trained with crop_size=576, while EncNet+JPU (ResNet-101) is trained with crop_size=480 for fitting 4 images into a 12G GPU.

Visual Results

Dataset Input GT EncNet Ours
PContext
ADE20K

Acknowledgement

Code borrows heavily from PyTorch-Encoding.

About

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •