This is the official implementation of Deep Orthogonal Hypersphere Compression for Anomaly Detection, ICLR 2024 (Spotlight).
- python 3.8
- pytorch
- torch-geometric
- torch-sparse
- numpy
- scikit-learn
If you have installed above mentioned packages you can skip this step. Otherwise run:
pip install -r requirements.txt
To generate results
python demo_DOHSC.py --DS MUTAG --eval True
or
python demo_DO2HSC.py --DS MUTAG --eval True
To generate results, please run:
python demo_tabular.py
For running tabular data, the dataset name needs to be revised in corresponding demo files.
To generate results, please run:
python demo_cifar10.py
If you find this code useful in your research, please consider citing:
@inproceedings{zhang2024deep,
title={Deep Orthogonal Hypersphere Compression for Anomaly Detection},
author={Zhang, Yunhe and Sun, Yan and Cai, Jinyu and Fan, Jicong},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024}
}