A small module that works with MNE-Python to perform microstate analysis in EEG and MEG data.
To learn more about microstate analysis, read the paper:
Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1995). Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Transactions on Biomedical Engineering. https://ieeexplore.ieee.org/document/391164
Allows return of GEV from main function.
Install this package using PIP:
pip install mne-microstates
or using conda:
conda install -c conda-forge mne-microstates
import mne
import mne_microstates
# Load MNE sample dataset
from mne.datasets import sample
fname = sample.data_path() / 'MEG/sample/sample_audvis_filt.fif'
raw = mne.io.read_raw_fif(fname, preload=True)
# Always use an average EEG reference when doing microstate analysis
raw.set_eeg_reference('average')
# Highpass filter the data a little bit
raw.filter(0.2, None)
# Selecting the sensor types to use in the analysis. In this example, we
# use only EEG channels
raw.pick_types(meg=False, eeg=True)
# Segment the data into 6 microstates
maps, segmentation = mne_microstates.segment(raw.get_data(), n_states=6)
# Plot the topographic maps of the found microstates
mne_microstates.plot_maps(maps, raw.info)
# Plot the segmentation of the first 500 samples
mne_microstates.plot_segmentation(segmentation[:500], raw.get_data()[:, :500], raw.times[:500])
Marijn van Vliet w.m.vanvliet@gmail.com
Kishi Bayes
Liu Ruixiang