Skip to content

Commit

Permalink
merge from jiajun/paddle_frontend
Browse files Browse the repository at this point in the history
  • Loading branch information
heliqi committed Sep 10, 2021
2 parents fe26401 + a0849a9 commit 629929e
Show file tree
Hide file tree
Showing 2 changed files with 169 additions and 0 deletions.
41 changes: 41 additions & 0 deletions python/tvm/relay/frontend/paddlepaddle.py
Original file line number Diff line number Diff line change
Expand Up @@ -708,6 +708,17 @@ def convert_hard_swish(g, op, block):
g.add_node(op.output("Out")[0], out)


def convert_index_select(g, op, block):
"""Operator converter for index_select."""

dim = op.attr("dim")
x = g.get_node(op.input("X")[0])
index = g.get_node(op.input("Index")[0])
out = _op.take(x, indices=index, axis=dim, mode="clip")

g.add_node(op.output("Out")[0], out)


def convert_layer_norm(g, op, block):
"""Operator converter for layer_norm."""

Expand Down Expand Up @@ -1055,6 +1066,33 @@ def convert_pow(g, op, block):
g.add_node(op.output("Out")[0], out)


def convert_norm(g, op, block):
"""Operator converter for norm."""

x = g.get_node(op.input("X")[0])
dtype = infer_type(x).checked_type.dtype
axis = op.attr("axis")
keepdim = op.attr("keepdim")
if op.attr("asvector"):
axis = None
order = op.attr("porder")
if order == np.inf:
out = _op.reduce.max(_op.abs(x), axis=axis, keepdims=keepdim)
elif order == np.NINF:
out = _op.reduce.min(_op.abs(x), axis=axis, keepdims=keepdim)
else:
reci_order = _expr.const(1.0 / order, dtype=dtype)
order = _expr.const(order)
out = _op.power(
_op.reduce.sum(_op.power(_op.abs(x), order), axis=axis, keepdims=keepdim),
reci_order,
)
if op.attr("asvector") and not keepdim:
out = _op.expand_dims(out, axis=0)

g.add_node(op.output("Out")[0], out)


def convert_range(g, op, block):
"""Operator converter for range."""

Expand Down Expand Up @@ -1567,6 +1605,7 @@ def convert_unsqueeze(g, op, block):
"greater_than": convert_elementwise_op,
"hard_sigmoid": convert_hard_sigmoid,
"hard_swish": convert_hard_swish,
"index_select": convert_index_select,
"isinf": convert_unary_op,
"isinf_v2": convert_unary_op,
"layer_norm": convert_layer_norm,
Expand All @@ -1576,6 +1615,7 @@ def convert_unsqueeze(g, op, block):
"lookup_table": convert_lookup_table,
"lookup_table_v2": convert_lookup_table,
"log": convert_unary_op,
"log2": convert_unary_op,
"log10": convert_unary_op,
"log1p": convert_log1p,
"logsumexp": convert_logsumexp,
Expand All @@ -1589,6 +1629,7 @@ def convert_unsqueeze(g, op, block):
"pad2d": convert_padding,
"pad3d": convert_padding,
"pow": convert_pow,
"p_norm": convert_norm,
"range": convert_range,
"reciprocal": convert_reciprocal,
"reduce_all": convert_reduce,
Expand Down
128 changes: 128 additions & 0 deletions tests/python/frontend/paddlepaddle/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -155,6 +155,7 @@ def forward(self, inputs):
"exp",
"floor",
"log",
"log2",
"log10",
"log1p",
"numel",
Expand Down Expand Up @@ -628,6 +629,26 @@ def ones_like2(inputs):


@tvm.testing.uses_gpu
def test_forward_ones():
@paddle.jit.to_static
def ones1(inputs):
ones = paddle.ones([1, 3, 10, 10])
out = inputs + ones
return out

@paddle.jit.to_static
def ones2(inputs):
shape = paddle.to_tensor([1, 3, 10, 10], dtype="int32")
ones = paddle.ones(shape)
out = inputs + ones
return out

input_shape = [1, 3, 10, 10]
input_data = paddle.rand(input_shape, dtype="float32")
verify_model(ones1, input_data=input_data)
verify_model(ones2, input_data=input_data)


def test_forward_elemwise():
class ElemwiseOp(nn.Layer):
def __init__(self, op_name):
Expand Down Expand Up @@ -739,6 +760,23 @@ def hard_swish(inputs):
verify_model(hard_swish, input_data=input_data)


@tvm.testing.uses_gpu
def test_forward_index_select():
@paddle.jit.to_static
def index_select1(x, index):
return paddle.index_select(x, index)

@paddle.jit.to_static
def index_select2(x, index):
return paddle.index_select(x, index, axis=1)

input_shape = [3, 10]
input_data = paddle.rand(input_shape, dtype="float32")
index = paddle.to_tensor(np.array([0, 1, 1]).astype("int32"))
verify_model(index_select1, input_data=[input_data, index])
verify_model(index_select2, input_data=[input_data, index])


@tvm.testing.uses_gpu
def test_forward_isinf():
@paddle.jit.to_static
Expand Down Expand Up @@ -943,6 +981,71 @@ def forward(self, inputs):
)


def test_forward_norm():
class Norm1(nn.Layer):
@paddle.jit.to_static
def forward(self, inputs):
return paddle.norm(inputs, p=float("inf"), axis=None, keepdim=False)

class Norm2(nn.Layer):
@paddle.jit.to_static
def forward(self, inputs):
return paddle.norm(inputs, p=float("-inf"), axis=None, keepdim=False)

class Norm3(nn.Layer):
@paddle.jit.to_static
def forward(self, inputs):
return paddle.norm(inputs, p=float("-inf"), axis=None, keepdim=True)

class Norm4(nn.Layer):
@paddle.jit.to_static
def forward(self, inputs):
return paddle.norm(inputs, p=float("inf"), axis=[1, 2], keepdim=False)

class Norm5(nn.Layer):
@paddle.jit.to_static
def forward(self, inputs):
return paddle.norm(inputs, p=float("inf"), axis=-1, keepdim=True)

class Norm6(nn.Layer):
@paddle.jit.to_static
def forward(self, inputs):
return paddle.norm(inputs, p=float(0.5), axis=1, keepdim=True)

class Norm7(nn.Layer):
@paddle.jit.to_static
def forward(self, inputs):
return paddle.norm(inputs, p=float(1), axis=None, keepdim=False)

class Norm8(nn.Layer):
@paddle.jit.to_static
def forward(self, inputs):
return paddle.norm(inputs, p=float(2.0), axis=1, keepdim=False)

class Norm9(nn.Layer):
@paddle.jit.to_static
def forward(self, inputs):
return paddle.norm(inputs, p=float(-0.5), axis=[1, 2], keepdim=False)

class Norm10(nn.Layer):
@paddle.jit.to_static
def forward(self, inputs):
return paddle.norm(inputs, p=float(-2), axis=(1), keepdim=False)

input_shape = [1, 3, 10, 10]
input_data = paddle.rand(input_shape, dtype="float32")
verify_model(Norm1(), input_data=input_data)
verify_model(Norm2(), input_data=input_data)
verify_model(Norm3(), input_data=input_data)
verify_model(Norm4(), input_data=input_data)
verify_model(Norm5(), input_data=input_data)
verify_model(Norm6(), input_data=input_data)
verify_model(Norm7(), input_data=input_data)
verify_model(Norm8(), input_data=input_data)
verify_model(Norm9(), input_data=input_data)
verify_model(Norm10(), input_data=input_data)


@tvm.testing.uses_gpu
def test_forward_pool2d():
@paddle.jit.to_static
Expand Down Expand Up @@ -1319,6 +1422,27 @@ def tile3(inputs, inputs2):
verify_model(tile3, input_data=[input_data, input_data2])


@tvm.testing.uses_gpu
def test_forward_zeros():
@paddle.jit.to_static
def zeros1(inputs):
zeros = paddle.zeros([1, 3, 10, 10])
out = inputs + zeros
return out

@paddle.jit.to_static
def zeros2(inputs):
shape = paddle.to_tensor([1, 3, 10, 10], dtype="int32")
zeros = paddle.zeros(shape)
out = inputs + zeros
return out

input_shape = [1, 3, 10, 10]
input_data = paddle.rand(input_shape, dtype="float32")
verify_model(zeros1, input_data=input_data)
verify_model(zeros2, input_data=input_data)


if __name__ == "__main__":
test_forward_add_subtract()
test_forward_addmm()
Expand All @@ -1338,12 +1462,14 @@ def tile3(inputs, inputs2):
test_forward_expand()
test_forward_flatten()
test_forward_shape_full()
test_forward_ones()
test_forward_ones_like()
test_forward_gather_assign_value()
test_forward_gather_nd()
test_forward_gelu()
test_forward_hard_sigmoid()
test_forward_hard_swish()
test_forward_index_select()
test_forward_interpolate()
test_forward_isinf()
test_forward_layer_norm()
Expand All @@ -1353,6 +1479,7 @@ def tile3(inputs, inputs2):
test_forward_matmul()
test_forward_multiply()
test_forward_nonzero()
test_forward_norm()
test_forward_pool2d()
test_forward_pad()
test_forward_pow()
Expand All @@ -1366,3 +1493,4 @@ def tile3(inputs, inputs2):
test_forward_tile()
test_forward_conv_transpose()
test_forward_unary_op()
test_forward_zeros()

0 comments on commit 629929e

Please sign in to comment.