Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Eigen type caster improvements #215

Merged
merged 14 commits into from
Jun 7, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
241 changes: 186 additions & 55 deletions include/nanobind/eigen/dense.h
Original file line number Diff line number Diff line change
Expand Up @@ -26,46 +26,73 @@ template <typename T> using DMap = Eigen::Map<T, 0, DStride>;
NAMESPACE_BEGIN(detail)

template <typename T>
constexpr int NumDimensions = bool(T::IsVectorAtCompileTime) ? 1 : 2;
constexpr int num_dimensions = bool(T::IsVectorAtCompileTime) ? 1 : 2;

template <typename T>
using array_for_eigen_t = ndarray<
template<typename T> struct StrideExtr {
using Type = Eigen::Stride<0, 0>;
};

template <typename T, int Options, typename StrideType> struct StrideExtr<Eigen::Map<T, Options, StrideType>> {
using Type = StrideType;
};

template<typename T> using Stride = typename StrideExtr<T>::Type;

/// Is true for Eigen types that are known at compile-time to hold contiguous memory only, which includes all specializations of Matrix and Array,
/// and specializations of Map and Ref with according stride types and shapes. A (compile-time) stride of 0 means "contiguous" to Eigen.
template<typename T> constexpr bool requires_contig_memory =
(Stride<T>::InnerStrideAtCompileTime == 0 || Stride<T>::InnerStrideAtCompileTime == 1) &&
(num_dimensions<T> == 1 ||
Stride<T>::OuterStrideAtCompileTime == 0 ||
Stride<T>::OuterStrideAtCompileTime != Eigen::Dynamic && Stride<T>::OuterStrideAtCompileTime == T::InnerSizeAtCompileTime);

/// Is true for StrideTypes that can describe the contiguous memory layout of the plain Eigen type T.
template<typename StrideType, typename T> constexpr bool can_map_contig_memory =
(StrideType::InnerStrideAtCompileTime == 0 || StrideType::InnerStrideAtCompileTime == 1 || StrideType::InnerStrideAtCompileTime == Eigen::Dynamic) &&
(num_dimensions<T> == 1 ||
StrideType::OuterStrideAtCompileTime == 0 ||
StrideType::OuterStrideAtCompileTime == Eigen::Dynamic ||
StrideType::OuterStrideAtCompileTime == T::InnerSizeAtCompileTime);

/// Alias ndarray for a given Eigen type, to be used by type_caster<EigenType>::from_python, which calls type_caster<array_for_eigen_t<EigenType>>::from_python.
/// If the Eigen type is known at compile-time to handle contiguous memory only, then this alias makes type_caster<array_for_eigen_t<EigenType>>::from_python
/// either fail or provide an ndarray with contiguous memory, triggering a conversion if necessary and supported by flags.
/// Otherwise, this alias makes type_caster<array_for_eigen_t<EigenType>>::from_python either fail or provide an ndarray with arbitrary strides,
/// which need to be checked for compatibility then. There is no way to ask type_caster<ndarray> for specific strides other than c_contig and f_contig.
/// Hence, if an Eigen type requires non-contiguous strides (at compile-time) and type_caster<array_for_eigen_t<EigenType>> provides an ndarray with unsuitable strides (at run-time),
/// then type_caster<EigenType>::from_python just fails. Note, however, that this is rather unusual, since the default stride type of Map requires contiguous memory,
/// and the one of Ref requires a contiguous inner stride, while it can handle any outer stride.
template <typename T> using array_for_eigen_t = ndarray<
typename T::Scalar,
numpy,
std::conditional_t<
NumDimensions<T> == 1,
num_dimensions<T> == 1,
shape<(size_t) T::SizeAtCompileTime>,
shape<(size_t) T::RowsAtCompileTime,
(size_t) T::ColsAtCompileTime>>,
std::conditional_t<
T::InnerStrideAtCompileTime == Eigen::Dynamic,
any_contig,
requires_contig_memory<T>,
std::conditional_t<
T::IsRowMajor || NumDimensions<T> == 1,
num_dimensions<T> == 1 || T::IsRowMajor,
c_contig,
f_contig
>
>
>;
f_contig>,
any_contig>>;
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This part wasn't clear to me. Why any_contig if requiresContigMemory==false?


/// Any kind of Eigen class
template <typename T> constexpr bool is_eigen_v =
is_base_of_template_v<T, Eigen::EigenBase>;
template <typename T> constexpr bool is_eigen_v = is_base_of_template_v<T, Eigen::EigenBase>;

/// Detects Eigen::Array, Eigen::Matrix, etc.
template <typename T> constexpr bool is_eigen_plain_v =
is_base_of_template_v<T, Eigen::PlainObjectBase>;
template <typename T> constexpr bool is_eigen_plain_v = is_base_of_template_v<T, Eigen::PlainObjectBase>;

/// Detect Eigen::SparseMatrix
template <typename T> constexpr bool is_eigen_sparse_v =
is_base_of_template_v<T, Eigen::SparseMatrixBase>;
template <typename T> constexpr bool is_eigen_sparse_v = is_base_of_template_v<T, Eigen::SparseMatrixBase>;

/// Detects expression templates
template <typename T> constexpr bool is_eigen_xpr_v =
is_eigen_v<T> && !is_eigen_plain_v<T> && !is_eigen_sparse_v<T> &&
!std::is_base_of_v<Eigen::MapBase<T, Eigen::ReadOnlyAccessors>, T>;

template <typename T> struct type_caster<T, enable_if_t<is_eigen_plain_v<T>>> {
template <typename T> struct type_caster<T, enable_if_t<is_eigen_plain_v<T> && is_ndarray_scalar_v<typename T::Scalar>>> {
using Scalar = typename T::Scalar;
using NDArray = array_for_eigen_t<T>;
using NDArrayCaster = make_caster<NDArray>;
Expand All @@ -77,17 +104,12 @@ template <typename T> struct type_caster<T, enable_if_t<is_eigen_plain_v<T>>> {
if (!caster.from_python(src, flags, cleanup))
return false;
const NDArray &array = caster.value;

if constexpr (NumDimensions<T> == 1) {
if constexpr (num_dimensions<T> == 1)
value.resize(array.shape(0));
memcpy(value.data(), array.data(),
array.shape(0) * sizeof(Scalar));
} else {
else
value.resize(array.shape(0), array.shape(1));
memcpy(value.data(), array.data(),
array.shape(0) * array.shape(1) * sizeof(Scalar));
}

// array_for_eigen_t<T> ensures that array holds contiguous memory.
memcpy(value.data(), array.data(), array.size() * sizeof(Scalar));
return true;
}

Expand All @@ -100,10 +122,10 @@ template <typename T> struct type_caster<T, enable_if_t<is_eigen_plain_v<T>>> {
}

static handle from_cpp(const T &v, rv_policy policy, cleanup_list *cleanup) noexcept {
size_t shape[NumDimensions<T>];
int64_t strides[NumDimensions<T>];
size_t shape[num_dimensions<T>];
int64_t strides[num_dimensions<T>];

if constexpr (NumDimensions<T> == 1) {
if constexpr (num_dimensions<T> == 1) {
shape[0] = v.size();
strides[0] = v.innerStride();
} else {
Expand Down Expand Up @@ -148,18 +170,19 @@ template <typename T> struct type_caster<T, enable_if_t<is_eigen_plain_v<T>>> {
policy == rv_policy::move ? rv_policy::reference : policy;

object o = steal(NDArrayCaster::from_cpp(
NDArray(ptr, NumDimensions<T>, shape, owner, strides),
NDArray(ptr, num_dimensions<T>, shape, owner, strides),
array_rv_policy, cleanup));

return o.release();
}
};

/// Caster for Eigen expression templates
template <typename T> struct type_caster<T, enable_if_t<is_eigen_xpr_v<T>>> {
template <typename T> struct type_caster<T, enable_if_t<is_eigen_xpr_v<T> && is_ndarray_scalar_v<typename T::Scalar>>> {
using Array = Eigen::Array<typename T::Scalar, T::RowsAtCompileTime,
T::ColsAtCompileTime>;
using Caster = make_caster<Array>;
static constexpr bool IsClass = false;
static constexpr auto Name = Caster::Name;
template <typename T_> using Cast = T;

Expand All @@ -174,25 +197,60 @@ template <typename T> struct type_caster<T, enable_if_t<is_eigen_xpr_v<T>>> {

/// Caster for Eigen::Map<T>
template <typename T, int Options, typename StrideType>
struct type_caster<Eigen::Map<T, Options, StrideType>, enable_if_t<is_eigen_plain_v<T>>> {
struct type_caster<Eigen::Map<T, Options, StrideType>, enable_if_t<is_eigen_plain_v<T> && is_ndarray_scalar_v<typename T::Scalar>>> {
using Map = Eigen::Map<T, Options, StrideType>;
using NDArray = array_for_eigen_t<Map>;
using NDArrayCaster = type_caster<NDArray>;
static constexpr bool IsClass = false;
static constexpr auto Name = NDArrayCaster::Name;
template <typename T_> using Cast = Map;

NDArrayCaster caster;

bool from_python(handle src, uint8_t flags,
cleanup_list *cleanup) noexcept {
return caster.from_python(src, flags, cleanup);
bool from_python(handle src, uint8_t flags, cleanup_list *cleanup) noexcept {
// Conversions result in an Eigen::Map pointing into a temporary ndarray.
// If src is not a bound function argument, but e.g. an argument of cast, then this temporary would be destroyed upon returning from cast.
// Hence, conversions cannot be supported in this case.
// If src is a bound function argument, then cleanup would keep alive this temporary until returning from the bound function.
// Hence, conversions could be supported in this case, resulting in a bound function altering the Map without an effect on the Python side.
// This behaviour would be surprising, however, as bound functions expecting a Map most probably expect that Map to point into the caller's data.
// Hence, do not support conversions in any case.
return from_python_(src, flags & ~(uint8_t)cast_flags::convert, cleanup);
}

bool from_python_(handle src, uint8_t flags, cleanup_list* cleanup) noexcept {
if (!caster.from_python(src, flags, cleanup))
return false;

// Check if StrideType can cope with the strides of caster.value. Avoid this check if their types guarantee that, anyway.

// If requires_contig_memory<Map> is true, then StrideType is known at compile-time to only cope with contiguous memory.
// Then since caster.from_python has succeeded, caster.value now surely provides contiguous memory, and so its strides surely fit.
if constexpr (!requires_contig_memory<Map>) {
// A stride that is dynamic at compile-time copes with any stride at run-time.
if constexpr (StrideType::InnerStrideAtCompileTime != Eigen::Dynamic) {
// A stride of 0 at compile-time means "contiguous" to Eigen, which is always 1 for the inner stride.
int64_t expected_inner_stride = StrideType::InnerStrideAtCompileTime == 0 ? 1 : StrideType::InnerStrideAtCompileTime;
if (expected_inner_stride != (num_dimensions<T> == 1 || !T::IsRowMajor ? caster.value.stride(0) : caster.value.stride(1)))
return false;
}
if constexpr (num_dimensions<T> == 2 && StrideType::OuterStrideAtCompileTime != Eigen::Dynamic) {
int64_t expected_outer_stride =
StrideType::OuterStrideAtCompileTime == 0
? T::IsRowMajor ? caster.value.shape(1) : caster.value.shape(0)
: StrideType::OuterStrideAtCompileTime;
if (expected_outer_stride != (T::IsRowMajor ? caster.value.stride(0) : caster.value.stride(1)))
return false;
}
}
return true;
}

static handle from_cpp(const Map &v, rv_policy, cleanup_list *cleanup) noexcept {
size_t shape[NumDimensions<T>];
int64_t strides[NumDimensions<T>];
size_t shape[num_dimensions<T>];
int64_t strides[num_dimensions<T>];

if constexpr (NumDimensions<T> == 1) {
if constexpr (num_dimensions<T> == 1) {
shape[0] = v.size();
strides[0] = v.innerStride();
} else {
Expand All @@ -203,53 +261,126 @@ struct type_caster<Eigen::Map<T, Options, StrideType>, enable_if_t<is_eigen_plai
}

return NDArrayCaster::from_cpp(
NDArray((void *) v.data(), NumDimensions<T>, shape, handle(), strides),
NDArray((void *) v.data(), num_dimensions<T>, shape, handle(), strides),
rv_policy::reference, cleanup);
}

StrideType strides() const {
constexpr int IS = StrideType::InnerStrideAtCompileTime,
OS = StrideType::OuterStrideAtCompileTime;
constexpr int is = StrideType::InnerStrideAtCompileTime,
os = StrideType::OuterStrideAtCompileTime;

int64_t inner = caster.value.stride(0),
outer = caster.value.stride(1);
(void) outer;
outer;
if constexpr (num_dimensions<T> == 1)
outer = caster.value.shape(0);
else
outer = caster.value.stride(1);

if constexpr (T::IsRowMajor)
if constexpr (num_dimensions<T> == 2 && T::IsRowMajor)
std::swap(inner, outer);

if constexpr (std::is_same_v<StrideType, Eigen::InnerStride<IS>>)
// Compile-time strides of 0 must be passed as such to constructors of StrideType, to avoid assertions in Eigen.
if constexpr (is == 0) {
// Ensured by stride checks in from_python_:
// assert(inner == 1);
inner = 0;
}

if constexpr (os == 0) {
// Ensured by stride checks in from_python_:
// assert(num_dimensions<T> == 1 || outer == (T::IsRowMajor ? int64_t(caster.value.shape(1)) : int64_t(caster.value.shape(0))));
outer = 0;
}

if constexpr (std::is_same_v<StrideType, Eigen::InnerStride<is>>)
return StrideType(inner);
else if constexpr (std::is_same_v<StrideType, Eigen::OuterStride<OS>>)
else if constexpr (std::is_same_v<StrideType, Eigen::OuterStride<os>>)
return StrideType(outer);
else
return StrideType(outer, inner);
}

operator Map() {
NDArray &t = caster.value;
return Map(t.data(), t.shape(0), t.ndim() == 1 ? 1 : t.shape(1),
strides());
if constexpr (num_dimensions<T> == 1)
return Map(t.data(), t.shape(0), strides());
else
return Map(t.data(), t.shape(0), t.shape(1), strides());
}
};


/// Caster for Eigen::Ref<T>
template <typename T, int Options, typename StrideType>
struct type_caster<Eigen::Ref<T, Options, StrideType>, enable_if_t<is_eigen_plain_v<T>>> {
struct type_caster<Eigen::Ref<T, Options, StrideType>, enable_if_t<is_eigen_plain_v<T> && is_ndarray_scalar_v<typename T::Scalar>>> {
using Ref = Eigen::Ref<T, Options, StrideType>;
using Map = Eigen::Map<T, Options, StrideType>;
using DMap = Eigen::Map<T, Options, DStride>;
using MapCaster = make_caster<Map>;
static constexpr auto Name = MapCaster::Name;
using DMapCaster = make_caster<DMap>;
using DmapMatches = typename Eigen::internal::traits<Ref>::template match<DMap>::type;
static constexpr bool can_map_contig_mem = can_map_contig_memory<StrideType, T>;
static constexpr bool IsClass = false;
static constexpr auto Name = const_name<std::is_const_v<T>>(DMapCaster::Name, MapCaster::Name);
template <typename T_> using Cast = Ref;

MapCaster caster;
DMapCaster dcaster;


/// In short:
/// - type_caster<Ref<T>> supports no conversions, independent of flags.
/// - type_caster<Ref<T const>>
/// + supports stride conversions, independent of flags, except for uncommon strides.
/// + It additionally supports conversions to T::Scalar if flags say so,
/// and if either a cleanup_list is passed, or if Ref is guaranteed to map its own data.
///
/// type_caster<Ref<T const>> supports stride conversions independent of flags, because if the intention was to not allow them,
/// then the bound function would most probably expect a Map instead of a Ref.
///
/// Both Ref<T> and Ref<T const> map data.
/// Like for Map, type_caster<Ref<T>>::from_python does not support conversions, and for the same reasons.
/// But unlike Ref<T>, instead of mapping external data, Ref<T const> may alternatively map data that it owns itself.
/// Ref<T const> then maps its member variable m_object, having copy-constructed it from the passed Eigen type.
/// The primary use case of Ref<T const> is as function argument that either maps the caller's data, or a suitably converted copy thereof.
/// Hence, unlike with Map and Ref<T>, a Ref<T const> that maps a (converted) copy is intended,
/// and thus, type_caster<Ref<T const>>::from_python may support conversions.
/// It first calls the type_caster for matching strides, not supporting conversions.
/// If that fails, it calls the one for arbitrary strides. Since conversions to T::Scalar create a temporary ndarray,
/// conversions are supported only if flags say so, and if either a cleanup_list is passed (that keeps the temporary alive),
/// or if Ref<T const> is guaranteed to map its own data (having copied the temporary), which is ensured only if DmapMatches::value is false.
///
/// Unfortunately, if src's scalar type needs to be converted, then the latter means that e.g.
/// cast<Eigen::Ref<const Eigen::VectorXi>>(src) succeeds, while
/// cast< DRef<const Eigen::VectorXi>>(src) fails -
/// even though DRef would be expected to support a superset of the types supported by Ref.
///
/// Ref<T const>::m_object holds contiguous memory, which Ref silently fails to map if this is impossible given StrideType
/// and the passed object's shape. If mapping fails, then Ref is left with mapping nullptr.
/// While this could be considered below, it is not done for efficiency reasons:
/// due to Ref's missing move constructor, its unusual copy constructor, and since C++ does not guarantee named return value optimizations,
/// the Ref would need to be created only for checking it, and created a second time for returning it,
/// which seems too costly for a Ref that owns its data.
/// Instead of checking thoroughly after construction, conversion fails if it is known at compile-time that mapping may fail,
/// even though it may actually succeed in some of these cases at run-time (e.g. StrideType::OuterStrideAtCompileTime==4,
/// and a row-major Matrix with a dynamic number of columns and 4 columns at run-time).
/// Once Ref<T const> defines a move constructor https://gitlab.com/libeigen/eigen/-/issues/2668, this restriction may be lifted.
bool from_python(handle src, uint8_t flags, cleanup_list *cleanup) noexcept {
if constexpr (std::is_const_v<T>)
return caster.from_python(src, flags, cleanup) ||
can_map_contig_mem &&
dcaster.from_python_(src, (!DmapMatches::value || cleanup) ? flags : flags & ~(uint8_t)cast_flags::convert, cleanup);
else
return caster.from_python(src, flags, cleanup);
}

bool from_python(handle src, uint8_t flags,
cleanup_list *cleanup) noexcept {
return caster.from_python(src, flags, cleanup);
operator Ref() {
if constexpr (std::is_const_v<T>)
if (dcaster.caster.value.is_valid())
return Ref(dcaster.operator DMap());
return Ref(caster.operator Map());
}

operator Ref() { return Ref(caster.operator Map()); }
};

NAMESPACE_END(detail)
Expand Down
9 changes: 8 additions & 1 deletion include/nanobind/ndarray.h
Original file line number Diff line number Diff line change
Expand Up @@ -78,9 +78,16 @@ struct tensorflow { };
struct pytorch { };
struct jax { };

NAMESPACE_BEGIN(detail)

template<typename T> constexpr bool is_ndarray_scalar_v =
std::is_floating_point_v<T> || std::is_integral_v<T>;

NAMESPACE_END(detail)

template <typename T> constexpr dlpack::dtype dtype() {
static_assert(
std::is_floating_point_v<T> || std::is_integral_v<T>,
detail::is_ndarray_scalar_v<T>,
"nanobind::dtype<T>: T must be a floating point or integer variable!"
);

Expand Down
Loading