MobileNetV1 (Pytorch implementation) -- see https://arxiv.org/abs/1704.04861 for the paper.
MobileNetV2 (Pytorch implementation) -- see https://arxiv.org/abs/1801.04381 for the paper.
- convert coco annotation file to readable.
python3 script/json_formatter.py -i data/coco/annotations/
- build library
cd lib/
./make.sh
- training mobilenet on classifier dataset.
python3 train.py train -m checkpoint -w checkpoint/MobileNetV2_224_epoch:0048.pt
- training mobile-faster-rcnn on coco
CUDA_VISIBLE_DEVICES=0 python3 trainval_net.py \
--dataset coco --net mobilenetv1_224_100 \
--bs 1 --nw 4 \
--lr 0.001 --lr_decay_step 5 \
--use_tfb \
--cuda
- testing mobilenet on classifier dataset.
- testing mobile-faster-rcnn on coco
CUDA_VISIBLE_DEVICES=0 python3 test_net.py \
--dataset coco --net mobilenetv1_224_100 \
--load_dir models \
--checkepoch 1\
--checkpoint 234531\
--cuda