ai
transformers.js
translation
offline
web worker
remove background
offscreen canvas
maintained with ❤️ by
Volver AI is an Hugging Face Transformers.js wrapper for add AI capabilities to your web applications in a simple way with multithreading support.
Add the library to your project using your favorite package manager.
# pnpm
pnpm add @volverjs/ai
# yarn
yarn add @volverjs/ai
# npm
npm i -s @volverjs/ai
Then you can import and instantiate the AI functionality you need.
import { Translator, RemoveBackground } from '@volverjs/ai'
const translator = new Translator()
const removeBackground = new RemoveBackground()
The library automatically downloads and run the model inside a Web Worker. Using a Web Worker allows the library to run the model in a separate thread, preventing the main thread from blocking.
Warning
Any instance of the AI classes initializes a new Web Worker with the model and manages the communication between the main thread and the worker. If you need to use the same worker in multiple places, you can create a single instance and share it across your application.
The first time you instantiate the model, it will download the model files from Hugging Face Hub. This process can take a few seconds or minutes depending on the model size and your internet connection.
await translator.init()
Otherwise the model is initialized automatically when you call any method that requires the model to be loaded.
You can listen to the download progress of the model using the progress
event.
translator.on('progress', ({ file, progrees }) => {
console.log(`Download progress of ${file} is ${progress}%`)
})
Or with onProgress
initialization option.
translator.init({
onProgress: ({ file, progress }) => {
console.log(`Download progress of ${file} is ${progress}%`)
}
})
Translator allows to convert text from one language to another with the AI model of your choice
By default, the library uses the Xenova/nllb-200-distilled-600M model to translate text.
import { Translator } from '@volverjs/ai'
const translator = new Translator()
You can change the model by passing the model
option to the constructor. You can find a list of available models here.
const translator = new Translator({
model: 'Xenova/opus-mt-it-en'
})
To translate text, use the translate
method passing the text to translate and the from
and to
options with the language codes of the source and target languages.
const text = 'Ciao, come stai?'
const translated = await translator.translate(text, {
from: 'ita_Latn',
to: 'eng_Latn'
})
For Xenova/nllb-200-distilled-600M
model you can find the full list of supported languages here.
During the translation process, you can get the partial translation using the onUpdate
option.
const text = 'How are you?'
const translated = await translator.translate(text, {
from: 'eng_Latn',
to: 'ita_Latn',
onUpdate: ({ output }) => {
console.log(`Partial translation: ${output}`)
}
})
If you are using Vue.js, you can use the Composition API to create a reactive translation.
<script lang="ts" setup>
import { useTranslator } from '@volverjs/ai/vue'
import { ref } from 'vue'
const text = ref('')
const { translate } = useTranslator()
const { result } = translate(text, {
from: 'eng_Latn',
to: 'ita_Latn'
})
</script>
<template>
<input v-model="text" type="text" name="from">
<p>{{ result }}</p>
</template>
Tip
The result
reactive property contains the partial translation during process and the final result when the translation is completed.
You can use a custom model by passing the model
option to the useTranslator
function.
const { translate } = useTranslator({
model: 'Xenova/opus-mt-it-en'
})
By default, a new worker is created for each useTranslator
call. You can share the worker across multiple components by passing global
option.
const { translate } = useTranslator({
global: true
})
The model is initialized automatically when you use the translate
function.
To monitor the download progress, you can use the progress
reactive property.
const { result, progress } = translate(text, {
from: 'eng_Latn',
to: 'ita_Latn'
})
watch(progress, ({ file, progress: value }) => {
console.log(`Download of file ${file} with progress: ${value}%`)
})
To initialize the model manually, you can use the init
method.
const { init } = useTranslator()
const { isReady, progress } = init()
Below is a complete example of a Vue.js component that uses the useTranslator
function.
<script lang="ts" setup>
import { useTranslator } from '@volverjs/ai/vue'
import { ref, watch } from 'vue'
const text = ref('')
const { translate } = useTranslator()
const {
// Ref<string>
// the partial translation and the final result
result,
// Ref<{file: string, progress: number}[]>
// the download progress of the model
progress,
// Ref<Error | undefined>
// the error object if an error occurs
error,
// Ref<boolean>
// is true when an error occurs
isError,
// Ref<boolean>
// is true when the model is downloading
isLoading,
// Ref<boolean>
// is true when the model is ready
isReady,
// Promise<string>
// the promise that resolves when the translation is completed
promise,
// (text?: string) => Promise<string | undefined>
// manually execute the translation
execute
} = translate(
// Ref<string> | string | undefined
// the text to translate
text,
{
// the source language
from: 'eng_Latn',
// the target language
to: 'ita_Latn',
// boolean (default: true)
// set to false to disable the first translation execution
immediate: true,
// number (default: 500)
// the debounce time in milliseconds to wait before executing the translation
debounce: 800
}
)
</script>
<template>
<input v-model="text" type="text" name="from">
<p>{{ result }}</p>
</template>
Remove the background from an image uses briaai/RMBG-1.4 as background removal AI model, designed to effectively separate foreground from background in a range of categories and image types.
To remove the background from an image, use the predict
method passing the image URL.
import { RemoveBackground } from '@volverjs/ai'
const sourceImageURL = 'https://example.com/image.jpg'
const removeBackground = new RemoveBackground()
const result = await removeBackground.predict(sourceImageURL)
The URL could be a local file or a remote file. The library automatically downloads the image and processes it.
You can customize the quality and the type of the output image using the quality
and type
options.
The quality
option accepts a number from 0 to 1, and the type
option accepts the image MIME type.
const resultImageBlob = await removeBackground.predict(sourceImageURL, {
quality: 0.5,
type: 'image/webp'
})
const resultImageURL = URL.createObjectURL(resultImageBlob)
You can pass a canvas element in the DOM to the predict
method to draw the result directly on the canvas.
const canvas = document.getElementById('canvas') as HTMLCanvasElement
removeBackground.predict(sourceImageURL, { canvas })
Tip
@volverjs/ai
use the OffscreenCanvas API to delegate the image processing in the canvas to the worker thread.
If you are using Vue.js, you can use the Composition API to create a reactive background removal.
<script lang="ts" setup>
import { useRemoveBackground } from '@volverjs/ai/vue'
import { ref } from 'vue'
const sourceImageURL = ref('https://example.com/image.jpg')
const { predict } = useRemoveBackground()
const { resultUrl } = predict(sourceImageURL)
</script>
<template>
<img :src="sourceImageURL" alt="Source Image">
<img v-if="resultUrl" :src="resultUrl" alt="Result Image">
</template>
The resultUrl
reactive property contains the URL of the processed image. Change the sourceImageURL
to trigger the background removal process.
To use a canvas element, pass the canvas element to the predict
method.
<script lang="ts" setup>
import { useRemoveBackground } from '@volverjs/ai/vue'
import { ref } from 'vue'
const sourceImageURL = ref('https://example.com/image.jpg')
const canvasEl = ref<HTMLCanvasElement>()
const { predict } = useRemoveBackground()
predict(sourceImageURL, {
canvas: canvasEl
})
</script>
<template>
<img :src="sourceImageURL" alt="Source Image">
<canvas ref="canvasEl" />
</template>
By default, a new worker is created for each useRemoveBackground
call. You can share the worker across multiple components by passing global
option.
const { predict } = useRemoveBackground({
global: true
})
The model is initialized automatically when you use the translate
function.
To monitor the download progress, you can use the progress
reactive property.
const { resultUrl, progress } = predict(sourceImageURL)
watch(progress, ({ file, progress: value }) => {
console.log(`Download of file ${file} with progress: ${value}%`)
})
To initialize the model manually, you can use the init
method.
const { init } = useRemoveBackground()
const canvasEl = ref<HTMLCanvasElement>()
onMounted(() => {
init({
canvas: canvasEl
})
})
Below is a complete example of a Vue.js component that uses the useRemoveBackground
function.
<script lang="ts" setup>
import { useRemoveBackground } from '@volverjs/ai/vue'
import { ref, watch } from 'vue'
const sourceImageURL = ref('https://example.com/image.jpg')
const canvasEl = ref<HTMLCanvasElement>()
const { predict } = useRemoveBackground()
const {
// Ref<Blob | undefined>
// the processed image blob
result,
// Ref<string | undefined>
// the processed image URL
resultUrl,
// Ref<{file: string, progress: number}[]>
// the download progress of the model
progress,
// Ref<Error | undefined>
// the error object if an error occurs
error,
// Ref<boolean>
// is true when an error occurs
isError,
// Ref<boolean>
// is true when the model is downloading
isLoading,
// Ref<boolean>
// is true when the model is ready
isReady,
// Promise<string>
// the promise that resolves when the removal is completed
promise,
// (sourceUrl?: string) => <Promise<Blob | undefined>>
// manually execute the removal
execute
} = predict(
// Ref<string> | string | undefined
// the source image URL
sourceImageURL,
{
// the source language
canvas: canvasEl,
// the target language
type: 'image/webp',
// number (default: 0.5)
// the quality of the output image
quality: 0.5,
// boolean (default: true)
// set to false to disable the first removal execution
immediate: true,
}
)
</script>
<template>
<img :src="sourceImageURL" alt="Source Image">
<canvas ref="canvasEl" />
</template>
To learn more about @volverjs/ai
, check its documentation.