Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[misc] add forward context for attention #9029

Merged
merged 11 commits into from
Oct 3, 2024
56 changes: 7 additions & 49 deletions tests/kernels/test_flash_attn.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,9 @@
import pytest
import torch

import vllm.attention.backends.flash_attn # noqa: F401
from tests.kernels.utils import opcheck
from vllm.utils import seed_everything
from vllm.vllm_flash_attn import (flash_attn_varlen_func,
flash_attn_with_kvcache)

NUM_HEADS = [(4, 4), (8, 2), (16, 2)]
HEAD_SIZES = [128, 256]
Expand Down Expand Up @@ -112,36 +112,17 @@ def test_flash_attn_with_paged_kv(
(num_seqs, max_num_blocks_per_seq),
dtype=torch.int32)

output = torch.ops.vllm.flash_attn_with_kvcache(
decode_query=query.unsqueeze(1),
key_cache=key_cache,
value_cache=value_cache,
output = flash_attn_with_kvcache(
q=query.unsqueeze(1),
k_cache=key_cache,
v_cache=value_cache,
softmax_scale=scale,
causal=True,
block_table=block_tables,
cache_seqlens=kv_lens_tensor,
softcap=soft_cap if soft_cap is not None else 0,
).squeeze(1)

if num_blocks <= 2048:
test_utils = ["test_faketensor", "test_schema"]
else:
test_utils = ["test_faketensor"]

opcheck(torch.ops.vllm.flash_attn_with_kvcache,
args=tuple(),
kwargs=dict(
decode_query=query.unsqueeze(1),
key_cache=key_cache,
value_cache=value_cache,
softmax_scale=scale,
causal=True,
block_table=block_tables,
cache_seqlens=kv_lens_tensor,
softcap=soft_cap if soft_cap is not None else 0,
),
test_utils=test_utils)

ref_output = ref_paged_attn(
query=query,
key_cache=key_cache,
Expand Down Expand Up @@ -213,7 +194,7 @@ def test_varlen_with_paged_kv(
(num_seqs, max_num_blocks_per_seq),
dtype=torch.int32)

output = torch.ops.vllm.flash_attn_varlen_func(
output = flash_attn_varlen_func(
q=query,
k=key_cache,
v=value_cache,
Expand All @@ -228,29 +209,6 @@ def test_varlen_with_paged_kv(
softcap=soft_cap if soft_cap is not None else 0,
)

if num_blocks <= 2048:
test_utils = ["test_faketensor", "test_schema"]
else:
test_utils = ["test_faketensor"]

opcheck(torch.ops.vllm.flash_attn_varlen_func,
args=tuple(),
kwargs=dict(
q=query,
k=key_cache,
v=value_cache,
cu_seqlens_q=cu_query_lens,
cu_seqlens_k=cu_kv_lens,
max_seqlen_q=max_query_len,
max_seqlen_k=max_kv_len,
softmax_scale=scale,
causal=True,
window_size=window_size,
block_table=block_tables,
softcap=soft_cap if soft_cap is not None else 0,
),
test_utils=test_utils)

ref_output = ref_paged_attn(
query=query,
key_cache=key_cache,
Expand Down
Loading
Loading