Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Frontend]: Support base64 embedding #5935

Merged
merged 4 commits into from
Jun 30, 2024
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 33 additions & 0 deletions tests/entrypoints/openai/test_embedding.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,6 @@
import base64

import numpy as np
import openai
import pytest
import ray
Expand Down Expand Up @@ -109,3 +112,33 @@ async def test_batch_embedding(embedding_client: openai.AsyncOpenAI,
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 17
assert embeddings.usage.total_tokens == 17


@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[EMBEDDING_MODEL_NAME],
)
async def test_batch_base64_embedding(embedding_client: openai.AsyncOpenAI,
model_name: str):
input_texts = [
"Hello my name is",
"The best thing about vLLM is that it supports many different models"
]

responses_float = await embedding_client.embeddings.create(
input=input_texts, model=model_name, encoding_format="float")

responses_base64 = await embedding_client.embeddings.create(
input=input_texts, model=model_name, encoding_format="base64")

decoded_responses_base64_data = []
for data in responses_base64.data:
decoded_responses_base64_data.append(
np.frombuffer(base64.b64decode(data.embedding),
dtype="float").tolist())

assert responses_float.data[0].embedding == decoded_responses_base64_data[
0]
assert responses_float.data[1].embedding == decoded_responses_base64_data[
1]
2 changes: 1 addition & 1 deletion vllm/entrypoints/openai/protocol.py
Original file line number Diff line number Diff line change
Expand Up @@ -580,7 +580,7 @@ class CompletionStreamResponse(OpenAIBaseModel):
class EmbeddingResponseData(BaseModel):
index: int
object: str = "embedding"
embedding: List[float]
embedding: Union[List[float], str]


class EmbeddingResponse(BaseModel):
Expand Down
27 changes: 14 additions & 13 deletions vllm/entrypoints/openai/serving_embedding.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,8 @@
import base64
import time
from typing import AsyncIterator, List, Optional, Tuple

import numpy as np
from fastapi import Request

from vllm.config import ModelConfig
Expand All @@ -20,19 +22,19 @@


def request_output_to_embedding_response(
final_res_batch: List[EmbeddingRequestOutput],
request_id: str,
created_time: int,
model_name: str,
) -> EmbeddingResponse:
final_res_batch: List[EmbeddingRequestOutput], request_id: str,
created_time: int, model_name: str,
encoding_format: str) -> EmbeddingResponse:
data: List[EmbeddingResponseData] = []
num_prompt_tokens = 0
for idx, final_res in enumerate(final_res_batch):
assert final_res is not None
prompt_token_ids = final_res.prompt_token_ids

embedding_data = EmbeddingResponseData(
index=idx, embedding=final_res.outputs.embedding)
embedding = final_res.outputs.embedding
if encoding_format == "base64":
embedding = base64.b64encode(np.array(embedding))
embedding_data = EmbeddingResponseData(index=idx,
embedding=embedding)
data.append(embedding_data)

num_prompt_tokens += len(prompt_token_ids)
Expand Down Expand Up @@ -72,10 +74,8 @@ async def create_embedding(self, request: EmbeddingRequest,
if error_check_ret is not None:
return error_check_ret

# Return error for unsupported features.
if request.encoding_format == "base64":
return self.create_error_response(
"base64 encoding is not currently supported")
encoding_format = (request.encoding_format
if request.encoding_format else "float")
if request.dimensions is not None:
return self.create_error_response(
"dimensions is currently not supported")
Expand Down Expand Up @@ -129,7 +129,8 @@ async def create_embedding(self, request: EmbeddingRequest,
return self.create_error_response("Client disconnected")
final_res_batch[i] = res
response = request_output_to_embedding_response(
final_res_batch, request_id, created_time, model_name)
final_res_batch, request_id, created_time, model_name,
encoding_format)
except ValueError as e:
# TODO: Use a vllm-specific Validation Error
return self.create_error_response(str(e))
Expand Down
Loading