Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[BugFix] Fix MLPSpeculator handling of num_speculative_tokens #5876

Merged
merged 1 commit into from
Jun 27, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 7 additions & 3 deletions vllm/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -920,15 +920,19 @@ def maybe_create_spec_config(
max_logprobs=target_model_config.max_logprobs,
)

if (draft_model_config.hf_config.model_type == "mlp_speculator"
draft_hf_config = draft_model_config.hf_config
if (draft_hf_config.model_type == "mlp_speculator"
and target_parallel_config.world_size != 1):
# MLPSpeculator TP support will be added very soon
raise ValueError(
"Speculative decoding with mlp_speculator models does not "
"yet support distributed inferencing (TP > 1).")

n_predict = getattr(draft_model_config.hf_config, "n_predict",
None)
if (num_speculative_tokens is not None
and hasattr(draft_hf_config, "num_lookahead_tokens")):
draft_hf_config.num_lookahead_tokens = num_speculative_tokens

n_predict = getattr(draft_hf_config, "n_predict", None)
if n_predict is not None:
if num_speculative_tokens is None:
# Default to max value defined in draft model config.
Expand Down
15 changes: 8 additions & 7 deletions vllm/model_executor/models/mlp_speculator.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.sequence import SamplerOutput
from vllm.transformers_utils.configs import MLPSpeculatorConfig


class MLPSpeculatorLayerNorm(nn.Module):
Expand Down Expand Up @@ -48,16 +49,15 @@ def forward(self, x):

class MLPSpeculator(nn.Module):

def __init__(self, config, **kwargs) -> None:
def __init__(self, config: MLPSpeculatorConfig, **kwargs) -> None:
super().__init__()
self.n_predict = config.n_predict
self.vocab_size = config.vocab_size
self.emb_dim = config.emb_dim
self.inner_dim = config.inner_dim if config.inner_dim != 0 \
else config.emb_dim

self.max_speculative_tokens = getattr(config, "max_speculative_tokens",
self.n_predict)
self.max_speculative_tokens = config.num_lookahead_tokens

self.emb = nn.ModuleList([
VocabParallelEmbedding(config.vocab_size,
Expand Down Expand Up @@ -137,7 +137,8 @@ def generate_proposals(
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
params_dict = dict(self.named_parameters())
for name, loaded_weight in weights:
param = params_dict[name.replace("speculator.", "")]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
param = params_dict.get(name.replace("speculator.", ""))
if param is not None:
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
3 changes: 3 additions & 0 deletions vllm/transformers_utils/configs/mlp_speculator.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@ def __init__(self,
candidate tree.
For each candidate branch in the tree, head n produces topk[n]
additional sub-branches.
NOTE: This parameter is currently unused.
n_candidates: int
number of child candidates to create per sequence
"""
Expand All @@ -47,4 +48,6 @@ def __init__(self,
self.n_predict = n_predict
self.top_k_tokens_per_head = top_k_tokens_per_head
self.n_candidates = n_candidates
self.num_lookahead_tokens = n_predict

super().__init__(**kwargs)
Loading