Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Kernel] Add marlin_24 unit tests #4901

Merged
merged 4 commits into from
May 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
87 changes: 74 additions & 13 deletions tests/kernels/test_marlin_gemm.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,38 +7,46 @@

from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.gptq_marlin import (
GPTQ_MARLIN_MAX_PARALLEL, GPTQ_MARLIN_MIN_THREAD_N,
GPTQ_MARLIN_SUPPORTED_GROUP_SIZES, GPTQ_MARLIN_SUPPORTED_NUM_BITS)
from vllm.model_executor.layers.quantization.gptq_marlin_24 import (
GPTQ_MARLIN_24_MAX_PARALLEL, GPTQ_MARLIN_24_MIN_THREAD_N,
GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES, GPTQ_MARLIN_24_SUPPORTED_NUM_BITS)
from vllm.model_executor.layers.quantization.utils.marlin_perms import (
marlin_perm)
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
MarlinWorkspace, is_marlin_supported, marlin_quantize, marlin_weights)
MarlinWorkspace, compute_max_diff, is_marlin_supported, marlin_24_quantize,
marlin_quantize, marlin_weights)
from vllm.model_executor.layers.quantization.utils.quant_utils import (
gptq_pack, quantize_weights, sort_weights)

ACT_ORDER_OPTS = [False, True]
K_FULL_OPTS = [False, True]

K_CHUNKS = [128, 256]
N_CHUNKS = [64, 128, 256]
MARLIN_K_CHUNKS = [128]
MARLIN_N_CHUNKS = [64, 128, 256]

MARLIN_24_K_CHUNKS = [128]
MARLIN_24_N_CHUNKS = [256]

MNK_FACTORS = [
(1, 1, 1),
(1, 4, 8),
(1, 7, 5),
(1, 7 * 4, 5 * 1),
(13, 17, 67),
(26, 37, 13),
(67, 13, 11),
]


def rand_data(shape):
data = torch.rand(shape).to(torch.half).cuda()
return data
return torch.randn(shape, dtype=torch.half, device="cuda")


@pytest.mark.skipif(not is_marlin_supported(),
reason="Marlin is not supported on this GPU type.")
@pytest.mark.parametrize("k_chunk", K_CHUNKS)
@pytest.mark.parametrize("n_chunk", N_CHUNKS)
@pytest.mark.parametrize("k_chunk", MARLIN_K_CHUNKS)
@pytest.mark.parametrize("n_chunk", MARLIN_N_CHUNKS)
@pytest.mark.parametrize("num_bits", GPTQ_MARLIN_SUPPORTED_NUM_BITS)
@pytest.mark.parametrize("group_size", GPTQ_MARLIN_SUPPORTED_GROUP_SIZES)
@pytest.mark.parametrize("act_order", ACT_ORDER_OPTS)
Expand Down Expand Up @@ -82,7 +90,8 @@ def test_marlin_repack(k_chunk, n_chunk, num_bits, group_size, act_order,
q_w, g_idx, sort_indices = sort_weights(q_w, g_idx)

# Pack to Marlin format
marlin_q_w_1 = marlin_weights(q_w, size_k, size_n, num_bits)
marlin_q_w_1 = marlin_weights(q_w, size_k, size_n, num_bits,
marlin_perm[num_bits])

# Run Marlin repack GPU kernel
marlin_q_w_2 = ops.gptq_marlin_repack(
Expand All @@ -99,8 +108,8 @@ def test_marlin_repack(k_chunk, n_chunk, num_bits, group_size, act_order,

@pytest.mark.skipif(not is_marlin_supported(),
reason="Marlin is not supported on this GPU type.")
@pytest.mark.parametrize("k_chunk", K_CHUNKS)
@pytest.mark.parametrize("n_chunk", N_CHUNKS)
@pytest.mark.parametrize("k_chunk", MARLIN_K_CHUNKS)
@pytest.mark.parametrize("n_chunk", MARLIN_N_CHUNKS)
@pytest.mark.parametrize("num_bits", GPTQ_MARLIN_SUPPORTED_NUM_BITS)
@pytest.mark.parametrize("group_size", GPTQ_MARLIN_SUPPORTED_GROUP_SIZES)
@pytest.mark.parametrize("mnk_factors", MNK_FACTORS)
Expand Down Expand Up @@ -136,7 +145,8 @@ def test_marlin_gemm(
w_ref, marlin_q_w, marlin_s, g_idx, sort_indices, _ = marlin_quantize(
b_weight, num_bits, group_size, act_order)

workspace = MarlinWorkspace(size_n)
workspace = MarlinWorkspace(size_n, GPTQ_MARLIN_MIN_THREAD_N,
GPTQ_MARLIN_MAX_PARALLEL)

output = ops.gptq_marlin_gemm(
a_input,
Expand All @@ -155,4 +165,55 @@ def test_marlin_gemm(

torch.cuda.synchronize()

assert torch.allclose(output, output_ref, rtol=1e-2)
max_diff = compute_max_diff(output, output_ref)
print("max_diff = {}".format(max_diff))

assert max_diff < 0.04


@pytest.mark.skipif(not is_marlin_supported(),
reason="Marlin is not supported on this GPU type.")
@pytest.mark.parametrize("k_chunk", MARLIN_24_K_CHUNKS)
@pytest.mark.parametrize("n_chunk", MARLIN_24_N_CHUNKS)
@pytest.mark.parametrize("num_bits", GPTQ_MARLIN_24_SUPPORTED_NUM_BITS)
@pytest.mark.parametrize("group_size", GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES)
@pytest.mark.parametrize("mnk_factors", MNK_FACTORS)
def test_marlin_24_gemm(k_chunk, n_chunk, num_bits, group_size, mnk_factors):
m_factor, n_factor, k_factor = mnk_factors

size_m = m_factor
size_k = k_chunk * k_factor
size_n = n_chunk * n_factor

print(f"MNK = {size_m} {size_n} {size_k}")
print(f"groupsize = {group_size}")

a_input = rand_data((size_m, size_k))
b_weight = rand_data((size_k, size_n))

(w_24_ref, marlin_24_q_w_comp, marlin_24_meta,
marlin_24_s) = marlin_24_quantize(b_weight, num_bits, group_size)

workspace_24 = MarlinWorkspace(size_n, GPTQ_MARLIN_24_MIN_THREAD_N,
GPTQ_MARLIN_24_MAX_PARALLEL)

output_ref = torch.matmul(a_input, w_24_ref)

output = ops.gptq_marlin_24_gemm(
a_input,
marlin_24_q_w_comp,
marlin_24_meta,
marlin_24_s,
workspace_24.scratch,
num_bits,
a_input.shape[0],
b_weight.shape[1],
a_input.shape[1],
)

torch.cuda.synchronize()

max_diff = compute_max_diff(output, output_ref)
print("max_diff = {}".format(max_diff))

assert max_diff < 0.04
27 changes: 19 additions & 8 deletions vllm/model_executor/layers/quantization/gptq_marlin_24.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,15 @@

logger = init_logger(__name__)

GPTQ_MARLIN_24_TILE = 16
GPTQ_MARLIN_24_MIN_THREAD_N = 128
GPTQ_MARLIN_24_MIN_THREAD_K = 128
GPTQ_MARLIN_24_MAX_PARALLEL = 16

GPTQ_MARLIN_24_SUPPORTED_NUM_BITS = [4, 8]
GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES = [-1, 128]
GPTQ_MARLIN_24_SUPPORTED_SYM = [True]


class GPTQMarlin24Config(QuantizationConfig):
"""Config class for Marlin24.
Expand All @@ -25,15 +34,17 @@ def __init__(
self.weight_bits = weight_bits
self.group_size = group_size

if self.weight_bits != 4 and self.weight_bits != 8:
raise ValueError("weight_bits must be 4 or 8. Got = {}".format(
self.weight_bits))

if self.group_size != 128 and self.group_size != -1:
# Verify
if self.weight_bits not in GPTQ_MARLIN_24_SUPPORTED_NUM_BITS:
raise ValueError(
f"Marlin_24 does not support weight_bits = {self.weight_bits}. "
f"Only weight_bits = {GPTQ_MARLIN_24_SUPPORTED_NUM_BITS} "
"are supported.")
if self.group_size not in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES:
raise ValueError(
"Currently, only group size 128 and -1 (channelwise) "
"is supported for Marlin24, but got group_size of "
f"{self.group_size}")
f"Marlin_24 does not support group_size = {self.group_size}. "
f"Only group_sizes = {GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES} "
"are supported.")

# 4 Bits packed into 32 bit datatype.
self.pack_factor = 32 // self.weight_bits
Expand Down
Loading
Loading