You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Collecting environment information...
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.30.5
Libc version: glibc-2.35
Python version: 3.10.15 (main, Oct 3 2024, 07:27:34) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-122-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A800-SXM4-80GB
GPU 1: NVIDIA A800-SXM4-80GB
GPU 2: NVIDIA A800-SXM4-80GB
GPU 3: NVIDIA A800-SXM4-80GB
GPU 4: NVIDIA A800-SXM4-80GB
GPU 5: NVIDIA A800-SXM4-80GB
GPU 6: NVIDIA A800-SXM4-80GB
GPU 7: NVIDIA A800-SXM4-80GB
Nvidia driver version: 550.127.05
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.1.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 112
On-line CPU(s) list: 0-111
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
CPU family: 6
Model: 106
Thread(s) per core: 2
Core(s) per socket: 28
Socket(s): 2
Stepping: 6
CPU max MHz: 3100.0000
CPU min MHz: 800.0000
BogoMIPS: 4000.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid fsrm md_clear pconfig flush_l1d arch_capabilities
Virtualization: VT-x
L1d cache: 2.6 MiB (56 instances)
L1i cache: 1.8 MiB (56 instances)
L2 cache: 70 MiB (56 instances)
L3 cache: 84 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-27,56-83
NUMA node1 CPU(s): 28-55,84-111
Vulnerability Gather data sampling: Mitigation; Microcode
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] mypy==1.11.1
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.2.0
[pip3] sentence-transformers==3.2.1
[pip3] torch==2.5.1
[pip3] torchvision==0.20.1
[pip3] transformers==4.45.2
[pip3] transformers-stream-generator==0.0.5
[pip3] triton==3.1.0
[conda] numpy 1.26.4 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi
[conda] nvidia-ml-py 12.560.30 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi
[conda] pyzmq 26.2.0 pypi_0 pypi
[conda] sentence-transformers 3.2.1 pypi_0 pypi
[conda] torch 2.5.1 pypi_0 pypi
[conda] torchvision 0.20.1 pypi_0 pypi
[conda] transformers 4.45.2 pypi_0 pypi
[conda] transformers-stream-generator 0.0.5 pypi_0 pypi
[conda] triton 3.1.0 pypi_0 pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.1.dev3566+g49628fe (git sha: 49628fe
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
�[4mGPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 CPU Affinity NUMA Affinity GPU NUMA ID�[0m
GPU0 X NV8 NV8 NV8 NV8 NV8 NV8 NV8 PXB PXB SYS SYS 0-27,56-83 0 N/A
GPU1 NV8 X NV8 NV8 NV8 NV8 NV8 NV8 PXB PXB SYS SYS 0-27,56-83 0 N/A
GPU2 NV8 NV8 X NV8 NV8 NV8 NV8 NV8 NODE NODE SYS SYS 0-27,56-83 0 N/A
GPU3 NV8 NV8 NV8 X NV8 NV8 NV8 NV8 NODE NODE SYS SYS 0-27,56-83 0 N/A
GPU4 NV8 NV8 NV8 NV8 X NV8 NV8 NV8 SYS SYS PXB PXB 28-55,84-111 1 N/A
GPU5 NV8 NV8 NV8 NV8 NV8 X NV8 NV8 SYS SYS PXB PXB 28-55,84-111 1 N/A
GPU6 NV8 NV8 NV8 NV8 NV8 NV8 X NV8 SYS SYS NODE NODE 28-55,84-111 1 N/A
GPU7 NV8 NV8 NV8 NV8 NV8 NV8 NV8 X SYS SYS NODE NODE 28-55,84-111 1 N/A
NIC0 PXB PXB NODE NODE SYS SYS SYS SYS X PIX SYS SYS
NIC1 PXB PXB NODE NODE SYS SYS SYS SYS PIX X SYS SYS
NIC2 SYS SYS SYS SYS PXB PXB NODE NODE SYS SYS X PIX
NIC3 SYS SYS SYS SYS PXB PXB NODE NODE SYS SYS PIX X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
LD_LIBRARY_PATH=/root/anaconda3/envs/py310_vllm_dev/lib/python3.10/site-packages/cv2/../../lib64:
CUDA_MODULE_LOADING=LAZY
How would you like to use vllm
Description
Afer merging #10482 , torch.compile still generates multiple subprocesses((similar to the issue described in #10480).
I found that the number of threads for torch.compile is determined when importing torch(see:compile_threads), so setting
envTORCHINDUCTOR_COMPILE_THREADS after importing torch will not take effect
Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
The text was updated successfully, but these errors were encountered:
Your current environment
How would you like to use vllm
Description
Afer merging #10482 , torch.compile still generates multiple subprocesses((similar to the issue described in #10480).
I found that the number of threads for torch.compile is determined when
importing torch
(see:compile_threads), so settingenv
TORCHINDUCTOR_COMPILE_THREADS
afterimporting torch
will not take effectExample code
multiple subprocesses
without multiple subprocesses
Before submitting a new issue...
The text was updated successfully, but these errors were encountered: