Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Usage]: VSCode debugger is hanging #10480

Closed
1 task done
jeejeelee opened this issue Nov 20, 2024 · 3 comments · Fixed by #10482
Closed
1 task done

[Usage]: VSCode debugger is hanging #10480

jeejeelee opened this issue Nov 20, 2024 · 3 comments · Fixed by #10482
Labels
usage How to use vllm

Comments

@jeejeelee
Copy link
Collaborator

Your current environment

Collecting environment information...
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.30.5
Libc version: glibc-2.35

Python version: 3.10.15 (main, Oct  3 2024, 07:27:34) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-122-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA A800-SXM4-80GB
GPU 1: NVIDIA A800-SXM4-80GB
GPU 2: NVIDIA A800-SXM4-80GB
GPU 3: NVIDIA A800-SXM4-80GB
GPU 4: NVIDIA A800-SXM4-80GB
GPU 5: NVIDIA A800-SXM4-80GB
GPU 6: NVIDIA A800-SXM4-80GB
GPU 7: NVIDIA A800-SXM4-80GB

Nvidia driver version: 550.127.05
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.1.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        46 bits physical, 57 bits virtual
Byte Order:                           Little Endian
CPU(s):                               112
On-line CPU(s) list:                  0-111
Vendor ID:                            GenuineIntel
Model name:                           Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
CPU family:                           6
Model:                                106
Thread(s) per core:                   2
Core(s) per socket:                   28
Socket(s):                            2
Stepping:                             6
CPU max MHz:                          3100.0000
CPU min MHz:                          800.0000
BogoMIPS:                             4000.00
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid fsrm md_clear pconfig flush_l1d arch_capabilities
Virtualization:                       VT-x
L1d cache:                            2.6 MiB (56 instances)
L1i cache:                            1.8 MiB (56 instances)
L2 cache:                             70 MiB (56 instances)
L3 cache:                             84 MiB (2 instances)
NUMA node(s):                         2
NUMA node0 CPU(s):                    0-27,56-83
NUMA node1 CPU(s):                    28-55,84-111
Vulnerability Gather data sampling:   Mitigation; Microcode
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Not affected
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

Versions of relevant libraries:
[pip3] mypy==1.11.1
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.2.0
[pip3] sentence-transformers==3.2.1
[pip3] torch==2.5.1
[pip3] torchvision==0.20.1
[pip3] transformers==4.45.2
[pip3] transformers-stream-generator==0.0.5
[pip3] triton==3.1.0
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-cublas-cu12        12.4.5.8                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.4.127                 pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.1.0.70                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.2.1.3                 pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.5.147               pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.6.1.9                 pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.3.1.170               pypi_0    pypi
[conda] nvidia-ml-py              12.560.30                pypi_0    pypi
[conda] nvidia-nccl-cu12          2.21.5                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.4.127                 pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.4.127                 pypi_0    pypi
[conda] pyzmq                     26.2.0                   pypi_0    pypi
[conda] sentence-transformers     3.2.1                    pypi_0    pypi
[conda] torch                     2.5.1                    pypi_0    pypi
[conda] torchvision               0.20.1                   pypi_0    pypi
[conda] transformers              4.45.2                   pypi_0    pypi
[conda] transformers-stream-generator 0.0.5                    pypi_0    pypi
[conda] triton                    3.1.0                    pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.1.dev3482+g272e31c (git sha: 272e31c
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
�[4mGPU0	GPU1	GPU2	GPU3	GPU4	GPU5	GPU6	GPU7	NIC0	NIC1	NIC2	NIC3	CPU Affinity	NUMA Affinity	GPU NUMA ID�[0m
GPU0	 X 	NV8	NV8	NV8	NV8	NV8	NV8	NV8	PXB	PXB	SYS	SYS	0-27,56-83	0		N/A
GPU1	NV8	 X 	NV8	NV8	NV8	NV8	NV8	NV8	PXB	PXB	SYS	SYS	0-27,56-83	0		N/A
GPU2	NV8	NV8	 X 	NV8	NV8	NV8	NV8	NV8	NODE	NODE	SYS	SYS	0-27,56-83	0		N/A
GPU3	NV8	NV8	NV8	 X 	NV8	NV8	NV8	NV8	NODE	NODE	SYS	SYS	0-27,56-83	0		N/A
GPU4	NV8	NV8	NV8	NV8	 X 	NV8	NV8	NV8	SYS	SYS	PXB	PXB	28-55,84-111	1		N/A
GPU5	NV8	NV8	NV8	NV8	NV8	 X 	NV8	NV8	SYS	SYS	PXB	PXB	28-55,84-111	1		N/A
GPU6	NV8	NV8	NV8	NV8	NV8	NV8	 X 	NV8	SYS	SYS	NODE	NODE	28-55,84-111	1		N/A
GPU7	NV8	NV8	NV8	NV8	NV8	NV8	NV8	 X 	SYS	SYS	NODE	NODE	28-55,84-111	1		N/A
NIC0	PXB	PXB	NODE	NODE	SYS	SYS	SYS	SYS	 X 	PIX	SYS	SYS				
NIC1	PXB	PXB	NODE	NODE	SYS	SYS	SYS	SYS	PIX	 X 	SYS	SYS				
NIC2	SYS	SYS	SYS	SYS	PXB	PXB	NODE	NODE	SYS	SYS	 X 	PIX				
NIC3	SYS	SYS	SYS	SYS	PXB	PXB	NODE	NODE	SYS	SYS	PIX	 X 				

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0
  NIC1: mlx5_1
  NIC2: mlx5_2
  NIC3: mlx5_3



How would you like to use vllm

Issue

After syncing to the latest main branch, I encountered a hanging issue while debugging vLLM code using VSCode. I found that many subprocess created by torch.compile, and the hanging occurs at _run_in_subprocess.

image

Reproduce code

Use offline_inference.py

Temporary solution

  • Set environment variable like:
os.environ["TORCHINDUCTOR_COMPILE_THREADS"]="1"
  • Configure VSCode: set subProcess: "false" in launch.json(Based on the feedback from Slack, I haven't actually tested it yet)

cc @youkaichao

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
@youkaichao
Copy link
Member

can you try if #10482 can help?

@youkaichao
Copy link
Member

oh, for _run_in_subprocess , also cc @DarkLight1337 , it seems when we check the model in another process, it will trigger torch.compile .

@youkaichao
Copy link
Member

I think d46c60d should fix it.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
usage How to use vllm
Projects
None yet
Development

Successfully merging a pull request may close this issue.

2 participants