-
Notifications
You must be signed in to change notification settings - Fork 2
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
packing: generate packing check macros via Kbuild #1
packing: generate packing check macros via Kbuild #1
Conversation
Update the ice driver to use the new pack_fields() API of the packing library instead of implementing its own version. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com>
Signed-off-by: Jacob Keller <jacob.e.keller@intel.com>
Currently <linux/packing.h> includes 20K lines of macro definitions for CHECK_PACKED_FIELDS_1 through CHECK_PACKED_FIELDS_50. These macros are necessary to perform compile-time checks on packed field arrays. They are generated via some simple C code, but currently committed to the header file directly. Instead, move these definitions into a separate <generated/packing-checks.h> header file which we include. Use Kbuild to generate a gen_packing_checks program which outputs the contents. This way, we do not need to commit 20k lines to the <linux/packing.h> header, and we can easily change the number of definitions generated by updating the lib/gen_packing_checks.c host program file. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com>
Feel free to squash things in. I presume the ice driver change can be kept out and squashed into my series, depending on how we want to organize sending things. |
If the C program isn't super well liked, I also have a shell-script version, but I think the C program is better. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Please wait until tomorrow, I might have some ideas on how to make the size_t -> u16 change look a bit nicer while at the same time remaining size-conscious.
Awesome, I look forward to it! |
If SER L2 occurs during the WoWLAN resume flow, the add interface flow is triggered by ieee80211_reconfig(). However, due to rtw89_wow_resume() return failure, it will cause the add interface flow to be executed again, resulting in a double add list and causing a kernel panic. Therefore, we have added a check to prevent double adding of the list. list_add double add: new=ffff99d6992e2010, prev=ffff99d6992e2010, next=ffff99d695302628. ------------[ cut here ]------------ kernel BUG at lib/list_debug.c:37! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 0 PID: 9 Comm: kworker/0:1 Tainted: G W O 6.6.30-02659-gc18865c4dfbd #1 770df2933251a0e3c888ba69d1053a817a6376a7 Hardware name: HP Grunt/Grunt, BIOS Google_Grunt.11031.169.0 06/24/2021 Workqueue: events_freezable ieee80211_restart_work [mac80211] RIP: 0010:__list_add_valid_or_report+0x5e/0xb0 Code: c7 74 18 48 39 ce 74 13 b0 01 59 5a 5e 5f 41 58 41 59 41 5a 5d e9 e2 d6 03 00 cc 48 c7 c7 8d 4f 17 83 48 89 c2 e8 02 c0 00 00 <0f> 0b 48 c7 c7 aa 8c 1c 83 e8 f4 bf 00 00 0f 0b 48 c7 c7 c8 bc 12 RSP: 0018:ffffa91b8007bc50 EFLAGS: 00010246 RAX: 0000000000000058 RBX: ffff99d6992e0900 RCX: a014d76c70ef3900 RDX: ffffa91b8007bae8 RSI: 00000000ffffdfff RDI: 0000000000000001 RBP: ffffa91b8007bc88 R08: 0000000000000000 R09: ffffa91b8007bae0 R10: 00000000ffffdfff R11: ffffffff83a79800 R12: ffff99d695302060 R13: ffff99d695300900 R14: ffff99d6992e1be0 R15: ffff99d6992e2010 FS: 0000000000000000(0000) GS:ffff99d6aac00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000078fbdba43480 CR3: 000000010e464000 CR4: 00000000001506f0 Call Trace: <TASK> ? __die_body+0x1f/0x70 ? die+0x3d/0x60 ? do_trap+0xa4/0x110 ? __list_add_valid_or_report+0x5e/0xb0 ? do_error_trap+0x6d/0x90 ? __list_add_valid_or_report+0x5e/0xb0 ? handle_invalid_op+0x30/0x40 ? __list_add_valid_or_report+0x5e/0xb0 ? exc_invalid_op+0x3c/0x50 ? asm_exc_invalid_op+0x16/0x20 ? __list_add_valid_or_report+0x5e/0xb0 rtw89_ops_add_interface+0x309/0x310 [rtw89_core 7c32b1ee6854761c0321027c8a58c5160e41f48f] drv_add_interface+0x5c/0x130 [mac80211 83e989e6e616bd5b4b8a2b0a9f9352a2c385a3bc] ieee80211_reconfig+0x241/0x13d0 [mac80211 83e989e6e616bd5b4b8a2b0a9f9352a2c385a3bc] ? finish_wait+0x3e/0x90 ? synchronize_rcu_expedited+0x174/0x260 ? sync_rcu_exp_done_unlocked+0x50/0x50 ? wake_bit_function+0x40/0x40 ieee80211_restart_work+0xf0/0x140 [mac80211 83e989e6e616bd5b4b8a2b0a9f9352a2c385a3bc] process_scheduled_works+0x1e5/0x480 worker_thread+0xea/0x1e0 kthread+0xdb/0x110 ? move_linked_works+0x90/0x90 ? kthread_associate_blkcg+0xa0/0xa0 ret_from_fork+0x3b/0x50 ? kthread_associate_blkcg+0xa0/0xa0 ret_from_fork_asm+0x11/0x20 </TASK> Modules linked in: dm_integrity async_xor xor async_tx lz4 lz4_compress zstd zstd_compress zram zsmalloc rfcomm cmac uinput algif_hash algif_skcipher af_alg btusb btrtl iio_trig_hrtimer industrialio_sw_trigger btmtk industrialio_configfs btbcm btintel uvcvideo videobuf2_vmalloc iio_trig_sysfs videobuf2_memops videobuf2_v4l2 videobuf2_common uvc snd_hda_codec_hdmi veth snd_hda_intel snd_intel_dspcfg acpi_als snd_hda_codec industrialio_triggered_buffer kfifo_buf snd_hwdep industrialio i2c_piix4 snd_hda_core designware_i2s ip6table_nat snd_soc_max98357a xt_MASQUERADE xt_cgroup snd_soc_acp_rt5682_mach fuse rtw89_8922ae(O) rtw89_8922a(O) rtw89_pci(O) rtw89_core(O) 8021q mac80211(O) bluetooth ecdh_generic ecc cfg80211 r8152 mii joydev gsmi: Log Shutdown Reason 0x03 ---[ end trace 0000000000000000 ]--- Signed-off-by: Chih-Kang Chang <gary.chang@realtek.com> Signed-off-by: Ping-Ke Shih <pkshih@realtek.com> Link: https://patch.msgid.link/20240731070506.46100-4-pkshih@realtek.com
Ethtool callbacks can be executed while reset is in progress and try to access deleted resources, e.g. getting coalesce settings can result in a NULL pointer dereference seen below. Reproduction steps: Once the driver is fully initialized, trigger reset: # echo 1 > /sys/class/net/<interface>/device/reset when reset is in progress try to get coalesce settings using ethtool: # ethtool -c <interface> BUG: kernel NULL pointer dereference, address: 0000000000000020 PGD 0 P4D 0 Oops: Oops: 0000 [#1] PREEMPT SMP PTI CPU: 11 PID: 19713 Comm: ethtool Tainted: G S 6.10.0-rc7+ torvalds#7 RIP: 0010:ice_get_q_coalesce+0x2e/0xa0 [ice] RSP: 0018:ffffbab1e9bcf6a8 EFLAGS: 00010206 RAX: 000000000000000c RBX: ffff94512305b028 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffff9451c3f2e588 RDI: ffff9451c3f2e588 RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000 R10: ffff9451c3f2e580 R11: 000000000000001f R12: ffff945121fa9000 R13: ffffbab1e9bcf760 R14: 0000000000000013 R15: ffffffff9e65dd40 FS: 00007faee5fbe740(0000) GS:ffff94546fd80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000020 CR3: 0000000106c2e005 CR4: 00000000001706f0 Call Trace: <TASK> ice_get_coalesce+0x17/0x30 [ice] coalesce_prepare_data+0x61/0x80 ethnl_default_doit+0xde/0x340 genl_family_rcv_msg_doit+0xf2/0x150 genl_rcv_msg+0x1b3/0x2c0 netlink_rcv_skb+0x5b/0x110 genl_rcv+0x28/0x40 netlink_unicast+0x19c/0x290 netlink_sendmsg+0x222/0x490 __sys_sendto+0x1df/0x1f0 __x64_sys_sendto+0x24/0x30 do_syscall_64+0x82/0x160 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7faee60d8e27 Calling netif_device_detach() before reset makes the net core not call the driver when ethtool command is issued, the attempt to execute an ethtool command during reset will result in the following message: netlink error: No such device instead of NULL pointer dereference. Once reset is done and ice_rebuild() is executing, the netif_device_attach() is called to allow for ethtool operations to occur again in a safe manner. Fixes: fcea6f3 ("ice: Add stats and ethtool support") Suggested-by: Jakub Kicinski <kuba@kernel.org> Reviewed-by: Igor Bagnucki <igor.bagnucki@intel.com> Signed-off-by: Dawid Osuchowski <dawid.osuchowski@linux.intel.com> Tested-by: Pucha Himasekhar Reddy <himasekharx.reddy.pucha@intel.com> (A Contingent worker at Intel) Reviewed-by: Michal Schmidt <mschmidt@redhat.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
Steve French reported null pointer dereference error from sha256 lib. cifs.ko can send session setup requests on reused connection. If reused connection is used for binding session, conn->binding can still remain true and generate_preauth_hash() will not set sess->Preauth_HashValue and it will be NULL. It is used as a material to create an encryption key in ksmbd_gen_smb311_encryptionkey. ->Preauth_HashValue cause null pointer dereference error from crypto_shash_update(). BUG: kernel NULL pointer dereference, address: 0000000000000000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 8 PID: 429254 Comm: kworker/8:39 Hardware name: LENOVO 20MAS08500/20MAS08500, BIOS N2CET69W (1.52 ) Workqueue: ksmbd-io handle_ksmbd_work [ksmbd] RIP: 0010:lib_sha256_base_do_update.isra.0+0x11e/0x1d0 [sha256_ssse3] <TASK> ? show_regs+0x6d/0x80 ? __die+0x24/0x80 ? page_fault_oops+0x99/0x1b0 ? do_user_addr_fault+0x2ee/0x6b0 ? exc_page_fault+0x83/0x1b0 ? asm_exc_page_fault+0x27/0x30 ? __pfx_sha256_transform_rorx+0x10/0x10 [sha256_ssse3] ? lib_sha256_base_do_update.isra.0+0x11e/0x1d0 [sha256_ssse3] ? __pfx_sha256_transform_rorx+0x10/0x10 [sha256_ssse3] ? __pfx_sha256_transform_rorx+0x10/0x10 [sha256_ssse3] _sha256_update+0x77/0xa0 [sha256_ssse3] sha256_avx2_update+0x15/0x30 [sha256_ssse3] crypto_shash_update+0x1e/0x40 hmac_update+0x12/0x20 crypto_shash_update+0x1e/0x40 generate_key+0x234/0x380 [ksmbd] generate_smb3encryptionkey+0x40/0x1c0 [ksmbd] ksmbd_gen_smb311_encryptionkey+0x72/0xa0 [ksmbd] ntlm_authenticate.isra.0+0x423/0x5d0 [ksmbd] smb2_sess_setup+0x952/0xaa0 [ksmbd] __process_request+0xa3/0x1d0 [ksmbd] __handle_ksmbd_work+0x1c4/0x2f0 [ksmbd] handle_ksmbd_work+0x2d/0xa0 [ksmbd] process_one_work+0x16c/0x350 worker_thread+0x306/0x440 ? __pfx_worker_thread+0x10/0x10 kthread+0xef/0x120 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x44/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK> Fixes: f5a544e ("ksmbd: add support for SMB3 multichannel") Cc: stable@vger.kernel.org # v5.15+ Signed-off-by: Namjae Jeon <linkinjeon@kernel.org> Signed-off-by: Steve French <stfrench@microsoft.com>
When we cork messages in psock->cork, the last message triggers the flushing will result in sending a sk_msg larger than the current message size. In this case, in tcp_bpf_send_verdict(), 'copied' becomes negative at least in the following case: 468 case __SK_DROP: 469 default: 470 sk_msg_free_partial(sk, msg, tosend); 471 sk_msg_apply_bytes(psock, tosend); 472 *copied -= (tosend + delta); // <==== HERE 473 return -EACCES; Therefore, it could lead to the following BUG with a proper value of 'copied' (thanks to syzbot). We should not use negative 'copied' as a return value here. ------------[ cut here ]------------ kernel BUG at net/socket.c:733! Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP Modules linked in: CPU: 0 UID: 0 PID: 3265 Comm: syz-executor510 Not tainted 6.11.0-rc3-syzkaller-00060-gd07b43284ab3 #0 Hardware name: linux,dummy-virt (DT) pstate: 61400009 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--) pc : sock_sendmsg_nosec net/socket.c:733 [inline] pc : sock_sendmsg_nosec net/socket.c:728 [inline] pc : __sock_sendmsg+0x5c/0x60 net/socket.c:745 lr : sock_sendmsg_nosec net/socket.c:730 [inline] lr : __sock_sendmsg+0x54/0x60 net/socket.c:745 sp : ffff800088ea3b30 x29: ffff800088ea3b30 x28: fbf00000062bc900 x27: 0000000000000000 x26: ffff800088ea3bc0 x25: ffff800088ea3bc0 x24: 0000000000000000 x23: f9f00000048dc000 x22: 0000000000000000 x21: ffff800088ea3d90 x20: f9f00000048dc000 x19: ffff800088ea3d90 x18: 0000000000000001 x17: 0000000000000000 x16: 0000000000000000 x15: 000000002002ffaf x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000 x11: 0000000000000000 x10: ffff8000815849c0 x9 : ffff8000815b49c0 x8 : 0000000000000000 x7 : 000000000000003f x6 : 0000000000000000 x5 : 00000000000007e0 x4 : fff07ffffd239000 x3 : fbf00000062bc900 x2 : 0000000000000000 x1 : 0000000000000000 x0 : 00000000fffffdef Call trace: sock_sendmsg_nosec net/socket.c:733 [inline] __sock_sendmsg+0x5c/0x60 net/socket.c:745 ____sys_sendmsg+0x274/0x2ac net/socket.c:2597 ___sys_sendmsg+0xac/0x100 net/socket.c:2651 __sys_sendmsg+0x84/0xe0 net/socket.c:2680 __do_sys_sendmsg net/socket.c:2689 [inline] __se_sys_sendmsg net/socket.c:2687 [inline] __arm64_sys_sendmsg+0x24/0x30 net/socket.c:2687 __invoke_syscall arch/arm64/kernel/syscall.c:35 [inline] invoke_syscall+0x48/0x110 arch/arm64/kernel/syscall.c:49 el0_svc_common.constprop.0+0x40/0xe0 arch/arm64/kernel/syscall.c:132 do_el0_svc+0x1c/0x28 arch/arm64/kernel/syscall.c:151 el0_svc+0x34/0xec arch/arm64/kernel/entry-common.c:712 el0t_64_sync_handler+0x100/0x12c arch/arm64/kernel/entry-common.c:730 el0t_64_sync+0x19c/0x1a0 arch/arm64/kernel/entry.S:598 Code: f9404463 d63f0060 3108441f 54fffe81 (d4210000) ---[ end trace 0000000000000000 ]--- Fixes: 4f738ad ("bpf: create tcp_bpf_ulp allowing BPF to monitor socket TX/RX data") Reported-by: syzbot+58c03971700330ce14d8@syzkaller.appspotmail.com Cc: Jakub Sitnicki <jakub@cloudflare.com> Signed-off-by: Cong Wang <cong.wang@bytedance.com> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Martin KaFai Lau <martin.lau@kernel.org> Link: https://patch.msgid.link/20240821030744.320934-1-xiyou.wangcong@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The fscache_cookie_lru_timer is initialized when the fscache module is inserted, but is not deleted when the fscache module is removed. If timer_reduce() is called before removing the fscache module, the fscache_cookie_lru_timer will be added to the timer list of the current cpu. Afterwards, a use-after-free will be triggered in the softIRQ after removing the fscache module, as follows: ================================================================== BUG: unable to handle page fault for address: fffffbfff803c9e9 PF: supervisor read access in kernel mode PF: error_code(0x0000) - not-present page PGD 21ffea067 P4D 21ffea067 PUD 21ffe6067 PMD 110a7c067 PTE 0 Oops: Oops: 0000 [#1] PREEMPT SMP KASAN PTI CPU: 1 UID: 0 PID: 0 Comm: swapper/1 Tainted: G W 6.11.0-rc3 torvalds#855 Tainted: [W]=WARN RIP: 0010:__run_timer_base.part.0+0x254/0x8a0 Call Trace: <IRQ> tmigr_handle_remote_up+0x627/0x810 __walk_groups.isra.0+0x47/0x140 tmigr_handle_remote+0x1fa/0x2f0 handle_softirqs+0x180/0x590 irq_exit_rcu+0x84/0xb0 sysvec_apic_timer_interrupt+0x6e/0x90 </IRQ> <TASK> asm_sysvec_apic_timer_interrupt+0x1a/0x20 RIP: 0010:default_idle+0xf/0x20 default_idle_call+0x38/0x60 do_idle+0x2b5/0x300 cpu_startup_entry+0x54/0x60 start_secondary+0x20d/0x280 common_startup_64+0x13e/0x148 </TASK> Modules linked in: [last unloaded: netfs] ================================================================== Therefore delete fscache_cookie_lru_timer when removing the fscahe module. Fixes: 12bb21a ("fscache: Implement cookie user counting and resource pinning") Cc: stable@kernel.org Signed-off-by: Baokun Li <libaokun1@huawei.com> Link: https://lore.kernel.org/r/20240826112056.2458299-1-libaokun@huaweicloud.com Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: Christian Brauner <brauner@kernel.org>
Commit 8c61291 ("mm: fix incorrect vbq reference in purge_fragmented_block") extended the 'vmap_block' structure to contain a 'cpu' field which is set at allocation time to the id of the initialising CPU. When a new 'vmap_block' is being instantiated by new_vmap_block(), the partially initialised structure is added to the local 'vmap_block_queue' xarray before the 'cpu' field has been initialised. If another CPU is concurrently walking the xarray (e.g. via vm_unmap_aliases()), then it may perform an out-of-bounds access to the remote queue thanks to an uninitialised index. This has been observed as UBSAN errors in Android: | Internal error: UBSAN: array index out of bounds: 00000000f2005512 [#1] PREEMPT SMP | | Call trace: | purge_fragmented_block+0x204/0x21c | _vm_unmap_aliases+0x170/0x378 | vm_unmap_aliases+0x1c/0x28 | change_memory_common+0x1dc/0x26c | set_memory_ro+0x18/0x24 | module_enable_ro+0x98/0x238 | do_init_module+0x1b0/0x310 Move the initialisation of 'vb->cpu' in new_vmap_block() ahead of the addition to the xarray. Link: https://lkml.kernel.org/r/20240812171606.17486-1-will@kernel.org Fixes: 8c61291 ("mm: fix incorrect vbq reference in purge_fragmented_block") Signed-off-by: Will Deacon <will@kernel.org> Reviewed-by: Baoquan He <bhe@redhat.com> Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Zhaoyang Huang <zhaoyang.huang@unisoc.com> Cc: Hailong.Liu <hailong.liu@oppo.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When enable CONFIG_MEMCG & CONFIG_KFENCE & CONFIG_KMEMLEAK, the following warning always occurs,This is because the following call stack occurred: mem_pool_alloc kmem_cache_alloc_noprof slab_alloc_node kfence_alloc Once the kfence allocation is successful,slab->obj_exts will not be empty, because it has already been assigned a value in kfence_init_pool. Since in the prepare_slab_obj_exts_hook function,we perform a check for s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE),the alloc_tag_add function will not be called as a result.Therefore,ref->ct remains NULL. However,when we call mem_pool_free,since obj_ext is not empty, it eventually leads to the alloc_tag_sub scenario being invoked. This is where the warning occurs. So we should add corresponding checks in the alloc_tagging_slab_free_hook. For __GFP_NO_OBJ_EXT case,I didn't see the specific case where it's using kfence,so I won't add the corresponding check in alloc_tagging_slab_free_hook for now. [ 3.734349] ------------[ cut here ]------------ [ 3.734807] alloc_tag was not set [ 3.735129] WARNING: CPU: 4 PID: 40 at ./include/linux/alloc_tag.h:130 kmem_cache_free+0x444/0x574 [ 3.735866] Modules linked in: autofs4 [ 3.736211] CPU: 4 UID: 0 PID: 40 Comm: ksoftirqd/4 Tainted: G W 6.11.0-rc3-dirty #1 [ 3.736969] Tainted: [W]=WARN [ 3.737258] Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022 [ 3.737875] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 3.738501] pc : kmem_cache_free+0x444/0x574 [ 3.738951] lr : kmem_cache_free+0x444/0x574 [ 3.739361] sp : ffff80008357bb60 [ 3.739693] x29: ffff80008357bb70 x28: 0000000000000000 x27: 0000000000000000 [ 3.740338] x26: ffff80008207f000 x25: ffff000b2eb2fd60 x24: ffff0000c0005700 [ 3.740982] x23: ffff8000804229e4 x22: ffff800082080000 x21: ffff800081756000 [ 3.741630] x20: fffffd7ff8253360 x19: 00000000000000a8 x18: ffffffffffffffff [ 3.742274] x17: ffff800ab327f000 x16: ffff800083398000 x15: ffff800081756df0 [ 3.742919] x14: 0000000000000000 x13: 205d344320202020 x12: 5b5d373038343337 [ 3.743560] x11: ffff80008357b650 x10: 000000000000005d x9 : 00000000ffffffd0 [ 3.744231] x8 : 7f7f7f7f7f7f7f7f x7 : ffff80008237bad0 x6 : c0000000ffff7fff [ 3.744907] x5 : ffff80008237ba78 x4 : ffff8000820bbad0 x3 : 0000000000000001 [ 3.745580] x2 : 68d66547c09f7800 x1 : 68d66547c09f7800 x0 : 0000000000000000 [ 3.746255] Call trace: [ 3.746530] kmem_cache_free+0x444/0x574 [ 3.746931] mem_pool_free+0x44/0xf4 [ 3.747306] free_object_rcu+0xc8/0xdc [ 3.747693] rcu_do_batch+0x234/0x8a4 [ 3.748075] rcu_core+0x230/0x3e4 [ 3.748424] rcu_core_si+0x14/0x1c [ 3.748780] handle_softirqs+0x134/0x378 [ 3.749189] run_ksoftirqd+0x70/0x9c [ 3.749560] smpboot_thread_fn+0x148/0x22c [ 3.749978] kthread+0x10c/0x118 [ 3.750323] ret_from_fork+0x10/0x20 [ 3.750696] ---[ end trace 0000000000000000 ]--- Link: https://lkml.kernel.org/r/20240816013336.17505-1-hao.ge@linux.dev Fixes: 4b87369 ("mm/slab: add allocation accounting into slab allocation and free paths") Signed-off-by: Hao Ge <gehao@kylinos.cn> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kees Cook <kees@kernel.org> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Pekka Enberg <penberg@kernel.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The main threat to data consistency in ice_xdp() is a possible asynchronous PF reset. It can be triggered by a user or by TX timeout handler. XDP setup and PF reset code access the same resources in the following sections: * ice_vsi_close() in ice_prepare_for_reset() - already rtnl-locked * ice_vsi_rebuild() for the PF VSI - not protected * ice_vsi_open() - already rtnl-locked With an unfortunate timing, such accesses can result in a crash such as the one below: [ +1.999878] ice 0000:b1:00.0: Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring 14 [ +2.002992] ice 0000:b1:00.0: Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring 18 [Mar15 18:17] ice 0000:b1:00.0 ens801f0np0: NETDEV WATCHDOG: CPU: 38: transmit queue 14 timed out 80692736 ms [ +0.000093] ice 0000:b1:00.0 ens801f0np0: tx_timeout: VSI_num: 6, Q 14, NTC: 0x0, HW_HEAD: 0x0, NTU: 0x0, INT: 0x4000001 [ +0.000012] ice 0000:b1:00.0 ens801f0np0: tx_timeout recovery level 1, txqueue 14 [ +0.394718] ice 0000:b1:00.0: PTP reset successful [ +0.006184] BUG: kernel NULL pointer dereference, address: 0000000000000098 [ +0.000045] #PF: supervisor read access in kernel mode [ +0.000023] #PF: error_code(0x0000) - not-present page [ +0.000023] PGD 0 P4D 0 [ +0.000018] Oops: 0000 [#1] PREEMPT SMP NOPTI [ +0.000023] CPU: 38 PID: 7540 Comm: kworker/38:1 Not tainted 6.8.0-rc7 #1 [ +0.000031] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0014.082620210524 08/26/2021 [ +0.000036] Workqueue: ice ice_service_task [ice] [ +0.000183] RIP: 0010:ice_clean_tx_ring+0xa/0xd0 [ice] [...] [ +0.000013] Call Trace: [ +0.000016] <TASK> [ +0.000014] ? __die+0x1f/0x70 [ +0.000029] ? page_fault_oops+0x171/0x4f0 [ +0.000029] ? schedule+0x3b/0xd0 [ +0.000027] ? exc_page_fault+0x7b/0x180 [ +0.000022] ? asm_exc_page_fault+0x22/0x30 [ +0.000031] ? ice_clean_tx_ring+0xa/0xd0 [ice] [ +0.000194] ice_free_tx_ring+0xe/0x60 [ice] [ +0.000186] ice_destroy_xdp_rings+0x157/0x310 [ice] [ +0.000151] ice_vsi_decfg+0x53/0xe0 [ice] [ +0.000180] ice_vsi_rebuild+0x239/0x540 [ice] [ +0.000186] ice_vsi_rebuild_by_type+0x76/0x180 [ice] [ +0.000145] ice_rebuild+0x18c/0x840 [ice] [ +0.000145] ? delay_tsc+0x4a/0xc0 [ +0.000022] ? delay_tsc+0x92/0xc0 [ +0.000020] ice_do_reset+0x140/0x180 [ice] [ +0.000886] ice_service_task+0x404/0x1030 [ice] [ +0.000824] process_one_work+0x171/0x340 [ +0.000685] worker_thread+0x277/0x3a0 [ +0.000675] ? preempt_count_add+0x6a/0xa0 [ +0.000677] ? _raw_spin_lock_irqsave+0x23/0x50 [ +0.000679] ? __pfx_worker_thread+0x10/0x10 [ +0.000653] kthread+0xf0/0x120 [ +0.000635] ? __pfx_kthread+0x10/0x10 [ +0.000616] ret_from_fork+0x2d/0x50 [ +0.000612] ? __pfx_kthread+0x10/0x10 [ +0.000604] ret_from_fork_asm+0x1b/0x30 [ +0.000604] </TASK> The previous way of handling this through returning -EBUSY is not viable, particularly when destroying AF_XDP socket, because the kernel proceeds with removal anyway. There is plenty of code between those calls and there is no need to create a large critical section that covers all of them, same as there is no need to protect ice_vsi_rebuild() with rtnl_lock(). Add xdp_state_lock mutex to protect ice_vsi_rebuild() and ice_xdp(). Leaving unprotected sections in between would result in two states that have to be considered: 1. when the VSI is closed, but not yet rebuild 2. when VSI is already rebuild, but not yet open The latter case is actually already handled through !netif_running() case, we just need to adjust flag checking a little. The former one is not as trivial, because between ice_vsi_close() and ice_vsi_rebuild(), a lot of hardware interaction happens, this can make adding/deleting rings exit with an error. Luckily, VSI rebuild is pending and can apply new configuration for us in a managed fashion. Therefore, add an additional VSI state flag ICE_VSI_REBUILD_PENDING to indicate that ice_xdp() can just hot-swap the program. Also, as ice_vsi_rebuild() flow is touched in this patch, make it more consistent by deconfiguring VSI when coalesce allocation fails. Fixes: 2d4238f ("ice: Add support for AF_XDP") Fixes: efc2214 ("ice: Add support for XDP") Reviewed-by: Wojciech Drewek <wojciech.drewek@intel.com> Reviewed-by: Jacob Keller <jacob.e.keller@intel.com> Tested-by: Chandan Kumar Rout <chandanx.rout@intel.com> Signed-off-by: Larysa Zaremba <larysa.zaremba@intel.com> Reviewed-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
If we have 2 threads that are using the same file descriptor and one of them is doing direct IO writes while the other is doing fsync, we have a race where we can end up either: 1) Attempt a fsync without holding the inode's lock, triggering an assertion failures when assertions are enabled; 2) Do an invalid memory access from the fsync task because the file private points to memory allocated on stack by the direct IO task and it may be used by the fsync task after the stack was destroyed. The race happens like this: 1) A user space program opens a file descriptor with O_DIRECT; 2) The program spawns 2 threads using libpthread for example; 3) One of the threads uses the file descriptor to do direct IO writes, while the other calls fsync using the same file descriptor. 4) Call task A the thread doing direct IO writes and task B the thread doing fsyncs; 5) Task A does a direct IO write, and at btrfs_direct_write() sets the file's private to an on stack allocated private with the member 'fsync_skip_inode_lock' set to true; 6) Task B enters btrfs_sync_file() and sees that there's a private structure associated to the file which has 'fsync_skip_inode_lock' set to true, so it skips locking the inode's VFS lock; 7) Task A completes the direct IO write, and resets the file's private to NULL since it had no prior private and our private was stack allocated. Then it unlocks the inode's VFS lock; 8) Task B enters btrfs_get_ordered_extents_for_logging(), then the assertion that checks the inode's VFS lock is held fails, since task B never locked it and task A has already unlocked it. The stack trace produced is the following: assertion failed: inode_is_locked(&inode->vfs_inode), in fs/btrfs/ordered-data.c:983 ------------[ cut here ]------------ kernel BUG at fs/btrfs/ordered-data.c:983! Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 9 PID: 5072 Comm: worker Tainted: G U OE 6.10.5-1-default #1 openSUSE Tumbleweed 69f48d427608e1c09e60ea24c6c55e2ca1b049e8 Hardware name: Acer Predator PH315-52/Covini_CFS, BIOS V1.12 07/28/2020 RIP: 0010:btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs] Code: 50 d6 86 c0 e8 (...) RSP: 0018:ffff9e4a03dcfc78 EFLAGS: 00010246 RAX: 0000000000000054 RBX: ffff9078a9868e98 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffff907dce4a7800 RDI: ffff907dce4a7800 RBP: ffff907805518800 R08: 0000000000000000 R09: ffff9e4a03dcfb38 R10: ffff9e4a03dcfb30 R11: 0000000000000003 R12: ffff907684ae7800 R13: 0000000000000001 R14: ffff90774646b600 R15: 0000000000000000 FS: 00007f04b96006c0(0000) GS:ffff907dce480000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f32acbfc000 CR3: 00000001fd4fa005 CR4: 00000000003726f0 Call Trace: <TASK> ? __die_body.cold+0x14/0x24 ? die+0x2e/0x50 ? do_trap+0xca/0x110 ? do_error_trap+0x6a/0x90 ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? exc_invalid_op+0x50/0x70 ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? asm_exc_invalid_op+0x1a/0x20 ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] btrfs_sync_file+0x21a/0x4d0 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? __seccomp_filter+0x31d/0x4f0 __x64_sys_fdatasync+0x4f/0x90 do_syscall_64+0x82/0x160 ? do_futex+0xcb/0x190 ? __x64_sys_futex+0x10e/0x1d0 ? switch_fpu_return+0x4f/0xd0 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160 entry_SYSCALL_64_after_hwframe+0x76/0x7e Another problem here is if task B grabs the private pointer and then uses it after task A has finished, since the private was allocated in the stack of task A, it results in some invalid memory access with a hard to predict result. This issue, triggering the assertion, was observed with QEMU workloads by two users in the Link tags below. Fix this by not relying on a file's private to pass information to fsync that it should skip locking the inode and instead pass this information through a special value stored in current->journal_info. This is safe because in the relevant section of the direct IO write path we are not holding a transaction handle, so current->journal_info is NULL. The following C program triggers the issue: $ cat repro.c /* Get the O_DIRECT definition. */ #ifndef _GNU_SOURCE #define _GNU_SOURCE #endif #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <stdint.h> #include <fcntl.h> #include <errno.h> #include <string.h> #include <pthread.h> static int fd; static ssize_t do_write(int fd, const void *buf, size_t count, off_t offset) { while (count > 0) { ssize_t ret; ret = pwrite(fd, buf, count, offset); if (ret < 0) { if (errno == EINTR) continue; return ret; } count -= ret; buf += ret; } return 0; } static void *fsync_loop(void *arg) { while (1) { int ret; ret = fsync(fd); if (ret != 0) { perror("Fsync failed"); exit(6); } } } int main(int argc, char *argv[]) { long pagesize; void *write_buf; pthread_t fsyncer; int ret; if (argc != 2) { fprintf(stderr, "Use: %s <file path>\n", argv[0]); return 1; } fd = open(argv[1], O_WRONLY | O_CREAT | O_TRUNC | O_DIRECT, 0666); if (fd == -1) { perror("Failed to open/create file"); return 1; } pagesize = sysconf(_SC_PAGE_SIZE); if (pagesize == -1) { perror("Failed to get page size"); return 2; } ret = posix_memalign(&write_buf, pagesize, pagesize); if (ret) { perror("Failed to allocate buffer"); return 3; } ret = pthread_create(&fsyncer, NULL, fsync_loop, NULL); if (ret != 0) { fprintf(stderr, "Failed to create writer thread: %d\n", ret); return 4; } while (1) { ret = do_write(fd, write_buf, pagesize, 0); if (ret != 0) { perror("Write failed"); exit(5); } } return 0; } $ mkfs.btrfs -f /dev/sdi $ mount /dev/sdi /mnt/sdi $ timeout 10 ./repro /mnt/sdi/foo Usually the race is triggered within less than 1 second. A test case for fstests will follow soon. Reported-by: Paulo Dias <paulo.miguel.dias@gmail.com> Link: https://bugzilla.kernel.org/show_bug.cgi?id=219187 Reported-by: Andreas Jahn <jahn-andi@web.de> Link: https://bugzilla.kernel.org/show_bug.cgi?id=219199 Reported-by: syzbot+4704b3cc972bd76024f1@syzkaller.appspotmail.com Link: https://lore.kernel.org/linux-btrfs/00000000000044ff540620d7dee2@google.com/ Fixes: 939b656 ("btrfs: fix corruption after buffer fault in during direct IO append write") CC: stable@vger.kernel.org # 5.15+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Daniel Machon says: ==================== net: microchip: add FDMA library and use it for Sparx5 This patch series is the first of a 2-part series, that adds a new common FDMA library for Microchip switch chips Sparx5 and lan966x. These chips share the same FDMA engine, and as such will benefit from a common library with a common implementation. This also has the benefit of removing a lot open-coded bookkeeping and duplicate code for the two drivers. Additionally, upstreaming efforts for a third chip, lan969x, will begin in the near future. This chip will use the new library too. In this first series, the FDMA library is introduced and used by the Sparx5 switch driver. ################### # Example of use: # ################### - Initialize the rx and tx fdma structs with values for: number of DCB's, number of DB's, channel ID, DB size (data buffer size), and total size of the requested memory. Also provide two callbacks: nextptr_cb() and dataptr_cb() for getting the nextptr and dataptr. - Allocate memory using fdma_alloc_phys() or fdma_alloc_coherent(). - Initialize the DCB's with fdma_dcb_init(). - Add new DCB's with fdma_dcb_add(). - Free memory with fdma_free_phys() or fdma_free_coherent(). ##################### # Patch breakdown: # ##################### Patch #1: introduces library and selects it for Sparx5. Patch #2: includes the fdma_api.h header and removes old symbols. Patch #3: replaces old rx and tx variables with equivalent ones from the fdma struct. Only the variables that can be changed without breaking traffic is changed in this patch. Patch #4: uses the library for allocation of rx buffers. This requires quite a bit of refactoring in this single patch. Patch #5: uses the library for adding DCB's in the rx path. Patch torvalds#6: uses the library for freeing rx buffers. Patch torvalds#7: uses the library helpers in the rx path. Patch torvalds#8: uses the library for allocation of tx buffers. This requires quite a bit of refactoring in this single patch. Patch torvalds#9: uses the library for adding DCB's in the tx path. Patch torvalds#10: uses the library helpers in the tx path. Patch torvalds#11: ditches the existing linked list for storing buffer addresses, and instead uses offsets into contiguous memory. Patch torvalds#12: modifies existing rx and tx functions to be direction independent. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
We observed a null-ptr-deref in fou_gro_receive() while shutting down a host. [0] The NULL pointer is sk->sk_user_data, and the offset 8 is of protocol in struct fou. When fou_release() is called due to netns dismantle or explicit tunnel teardown, udp_tunnel_sock_release() sets NULL to sk->sk_user_data. Then, the tunnel socket is destroyed after a single RCU grace period. So, in-flight udp4_gro_receive() could find the socket and execute the FOU GRO handler, where sk->sk_user_data could be NULL. Let's use rcu_dereference_sk_user_data() in fou_from_sock() and add NULL checks in FOU GRO handlers. [0]: BUG: kernel NULL pointer dereference, address: 0000000000000008 PF: supervisor read access in kernel mode PF: error_code(0x0000) - not-present page PGD 80000001032f4067 P4D 80000001032f4067 PUD 103240067 PMD 0 SMP PTI CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.10.216-204.855.amzn2.x86_64 #1 Hardware name: Amazon EC2 c5.large/, BIOS 1.0 10/16/2017 RIP: 0010:fou_gro_receive (net/ipv4/fou.c:233) [fou] Code: 41 5f c3 cc cc cc cc e8 e7 2e 69 f4 0f 1f 80 00 00 00 00 0f 1f 44 00 00 49 89 f8 41 54 48 89 f7 48 89 d6 49 8b 80 88 02 00 00 <0f> b6 48 08 0f b7 42 4a 66 25 fd fd 80 cc 02 66 89 42 4a 0f b6 42 RSP: 0018:ffffa330c0003d08 EFLAGS: 00010297 RAX: 0000000000000000 RBX: ffff93d9e3a6b900 RCX: 0000000000000010 RDX: ffff93d9e3a6b900 RSI: ffff93d9e3a6b900 RDI: ffff93dac2e24d08 RBP: ffff93d9e3a6b900 R08: ffff93dacbce6400 R09: 0000000000000002 R10: 0000000000000000 R11: ffffffffb5f369b0 R12: ffff93dacbce6400 R13: ffff93dac2e24d08 R14: 0000000000000000 R15: ffffffffb4edd1c0 FS: 0000000000000000(0000) GS:ffff93daee800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000008 CR3: 0000000102140001 CR4: 00000000007706f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <IRQ> ? show_trace_log_lvl (arch/x86/kernel/dumpstack.c:259) ? __die_body.cold (arch/x86/kernel/dumpstack.c:478 arch/x86/kernel/dumpstack.c:420) ? no_context (arch/x86/mm/fault.c:752) ? exc_page_fault (arch/x86/include/asm/irqflags.h:49 arch/x86/include/asm/irqflags.h:89 arch/x86/mm/fault.c:1435 arch/x86/mm/fault.c:1483) ? asm_exc_page_fault (arch/x86/include/asm/idtentry.h:571) ? fou_gro_receive (net/ipv4/fou.c:233) [fou] udp_gro_receive (include/linux/netdevice.h:2552 net/ipv4/udp_offload.c:559) udp4_gro_receive (net/ipv4/udp_offload.c:604) inet_gro_receive (net/ipv4/af_inet.c:1549 (discriminator 7)) dev_gro_receive (net/core/dev.c:6035 (discriminator 4)) napi_gro_receive (net/core/dev.c:6170) ena_clean_rx_irq (drivers/amazon/net/ena/ena_netdev.c:1558) [ena] ena_io_poll (drivers/amazon/net/ena/ena_netdev.c:1742) [ena] napi_poll (net/core/dev.c:6847) net_rx_action (net/core/dev.c:6917) __do_softirq (arch/x86/include/asm/jump_label.h:25 include/linux/jump_label.h:200 include/trace/events/irq.h:142 kernel/softirq.c:299) asm_call_irq_on_stack (arch/x86/entry/entry_64.S:809) </IRQ> do_softirq_own_stack (arch/x86/include/asm/irq_stack.h:27 arch/x86/include/asm/irq_stack.h:77 arch/x86/kernel/irq_64.c:77) irq_exit_rcu (kernel/softirq.c:393 kernel/softirq.c:423 kernel/softirq.c:435) common_interrupt (arch/x86/kernel/irq.c:239) asm_common_interrupt (arch/x86/include/asm/idtentry.h:626) RIP: 0010:acpi_idle_do_entry (arch/x86/include/asm/irqflags.h:49 arch/x86/include/asm/irqflags.h:89 drivers/acpi/processor_idle.c:114 drivers/acpi/processor_idle.c:575) Code: 8b 15 d1 3c c4 02 ed c3 cc cc cc cc 65 48 8b 04 25 40 ef 01 00 48 8b 00 a8 08 75 eb 0f 1f 44 00 00 0f 00 2d d5 09 55 00 fb f4 <fa> c3 cc cc cc cc e9 be fc ff ff 66 66 2e 0f 1f 84 00 00 00 00 00 RSP: 0018:ffffffffb5603e58 EFLAGS: 00000246 RAX: 0000000000004000 RBX: ffff93dac0929c00 RCX: ffff93daee833900 RDX: ffff93daee800000 RSI: ffff93daee87dc00 RDI: ffff93daee87dc64 RBP: 0000000000000001 R08: ffffffffb5e7b6c0 R09: 0000000000000044 R10: ffff93daee831b04 R11: 00000000000001cd R12: 0000000000000001 R13: ffffffffb5e7b740 R14: 0000000000000001 R15: 0000000000000000 ? sched_clock_cpu (kernel/sched/clock.c:371) acpi_idle_enter (drivers/acpi/processor_idle.c:712 (discriminator 3)) cpuidle_enter_state (drivers/cpuidle/cpuidle.c:237) cpuidle_enter (drivers/cpuidle/cpuidle.c:353) cpuidle_idle_call (kernel/sched/idle.c:158 kernel/sched/idle.c:239) do_idle (kernel/sched/idle.c:302) cpu_startup_entry (kernel/sched/idle.c:395 (discriminator 1)) start_kernel (init/main.c:1048) secondary_startup_64_no_verify (arch/x86/kernel/head_64.S:310) Modules linked in: udp_diag tcp_diag inet_diag nft_nat ipip tunnel4 dummy fou ip_tunnel nft_masq nft_chain_nat nf_nat wireguard nft_ct curve25519_x86_64 libcurve25519_generic nf_conntrack libchacha20poly1305 nf_defrag_ipv6 nf_defrag_ipv4 nft_objref chacha_x86_64 nft_counter nf_tables nfnetlink poly1305_x86_64 ip6_udp_tunnel udp_tunnel libchacha crc32_pclmul ghash_clmulni_intel aesni_intel crypto_simd cryptd glue_helper mousedev psmouse button ena ptp pps_core crc32c_intel CR2: 0000000000000008 Fixes: d92283e ("fou: change to use UDP socket GRO") Reported-by: Alphonse Kurian <alkurian@amazon.com> Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Link: https://patch.msgid.link/20240902173927.62706-1-kuniyu@amazon.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Chi Zhiling reported: We found a null pointer accessing in tracefs[1], the reason is that the variable 'ei_child' is set to LIST_POISON1, that means the list was removed in eventfs_remove_rec. so when access the ei_child->is_freed, the panic triggered. by the way, the following script can reproduce this panic loop1 (){ while true do echo "p:kp submit_bio" > /sys/kernel/debug/tracing/kprobe_events echo "" > /sys/kernel/debug/tracing/kprobe_events done } loop2 (){ while true do tree /sys/kernel/debug/tracing/events/kprobes/ done } loop1 & loop2 [1]: [ 1147.959632][T17331] Unable to handle kernel paging request at virtual address dead000000000150 [ 1147.968239][T17331] Mem abort info: [ 1147.971739][T17331] ESR = 0x0000000096000004 [ 1147.976172][T17331] EC = 0x25: DABT (current EL), IL = 32 bits [ 1147.982171][T17331] SET = 0, FnV = 0 [ 1147.985906][T17331] EA = 0, S1PTW = 0 [ 1147.989734][T17331] FSC = 0x04: level 0 translation fault [ 1147.995292][T17331] Data abort info: [ 1147.998858][T17331] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 [ 1148.005023][T17331] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 1148.010759][T17331] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 1148.016752][T17331] [dead000000000150] address between user and kernel address ranges [ 1148.024571][T17331] Internal error: Oops: 0000000096000004 [#1] SMP [ 1148.030825][T17331] Modules linked in: team_mode_loadbalance team nlmon act_gact cls_flower sch_ingress bonding tls macvlan dummy ib_core bridge stp llc veth amdgpu amdxcp mfd_core gpu_sched drm_exec drm_buddy radeon crct10dif_ce video drm_suballoc_helper ghash_ce drm_ttm_helper sha2_ce ttm sha256_arm64 i2c_algo_bit sha1_ce sbsa_gwdt cp210x drm_display_helper cec sr_mod cdrom drm_kms_helper binfmt_misc sg loop fuse drm dm_mod nfnetlink ip_tables autofs4 [last unloaded: tls] [ 1148.072808][T17331] CPU: 3 PID: 17331 Comm: ls Tainted: G W ------- ---- 6.6.43 #2 [ 1148.081751][T17331] Source Version: 21b3b386e948bedd29369af66f3e98ab01b1c650 [ 1148.088783][T17331] Hardware name: Greatwall GW-001M1A-FTF/GW-001M1A-FTF, BIOS KunLun BIOS V4.0 07/16/2020 [ 1148.098419][T17331] pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 1148.106060][T17331] pc : eventfs_iterate+0x2c0/0x398 [ 1148.111017][T17331] lr : eventfs_iterate+0x2fc/0x398 [ 1148.115969][T17331] sp : ffff80008d56bbd0 [ 1148.119964][T17331] x29: ffff80008d56bbf0 x28: ffff001ff5be2600 x27: 0000000000000000 [ 1148.127781][T17331] x26: ffff001ff52ca4e0 x25: 0000000000009977 x24: dead000000000100 [ 1148.135598][T17331] x23: 0000000000000000 x22: 000000000000000b x21: ffff800082645f10 [ 1148.143415][T17331] x20: ffff001fddf87c70 x19: ffff80008d56bc90 x18: 0000000000000000 [ 1148.151231][T17331] x17: 0000000000000000 x16: 0000000000000000 x15: ffff001ff52ca4e0 [ 1148.159048][T17331] x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000 [ 1148.166864][T17331] x11: 0000000000000000 x10: 0000000000000000 x9 : ffff8000804391d0 [ 1148.174680][T17331] x8 : 0000000180000000 x7 : 0000000000000018 x6 : 0000aaab04b92862 [ 1148.182498][T17331] x5 : 0000aaab04b92862 x4 : 0000000080000000 x3 : 0000000000000068 [ 1148.190314][T17331] x2 : 000000000000000f x1 : 0000000000007ea8 x0 : 0000000000000001 [ 1148.198131][T17331] Call trace: [ 1148.201259][T17331] eventfs_iterate+0x2c0/0x398 [ 1148.205864][T17331] iterate_dir+0x98/0x188 [ 1148.210036][T17331] __arm64_sys_getdents64+0x78/0x160 [ 1148.215161][T17331] invoke_syscall+0x78/0x108 [ 1148.219593][T17331] el0_svc_common.constprop.0+0x48/0xf0 [ 1148.224977][T17331] do_el0_svc+0x24/0x38 [ 1148.228974][T17331] el0_svc+0x40/0x168 [ 1148.232798][T17331] el0t_64_sync_handler+0x120/0x130 [ 1148.237836][T17331] el0t_64_sync+0x1a4/0x1a8 [ 1148.242182][T17331] Code: 54ffff6c f9400676 910006d6 f900067 (b9405300) [ 1148.248955][T17331] ---[ end trace 0000000000000000 ]--- The issue is that list_del() is used on an SRCU protected list variable before the synchronization occurs. This can poison the list pointers while there is a reader iterating the list. This is simply fixed by using list_del_rcu() that is specifically made for this purpose. Link: https://lore.kernel.org/linux-trace-kernel/20240829085025.3600021-1-chizhiling@163.com/ Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Link: https://lore.kernel.org/20240904131605.640d42b1@gandalf.local.home Fixes: 43aa6f9 ("eventfs: Get rid of dentry pointers without refcounts") Reported-by: Chi Zhiling <chizhiling@kylinos.cn> Tested-by: Chi Zhiling <chizhiling@kylinos.cn> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The start_kthread() and stop_thread() code was not always called with the interface_lock held. This means that the kthread variable could be unexpectedly changed causing the kthread_stop() to be called on it when it should not have been, leading to: while true; do rtla timerlat top -u -q & PID=$!; sleep 5; kill -INT $PID; sleep 0.001; kill -TERM $PID; wait $PID; done Causing the following OOPS: Oops: general protection fault, probably for non-canonical address 0xdffffc0000000002: 0000 [#1] PREEMPT SMP KASAN PTI KASAN: null-ptr-deref in range [0x0000000000000010-0x0000000000000017] CPU: 5 UID: 0 PID: 885 Comm: timerlatu/5 Not tainted 6.11.0-rc4-test-00002-gbc754cc76d1b-dirty torvalds#125 a533010b71dab205ad2f507188ce8c82203b0254 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 RIP: 0010:hrtimer_active+0x58/0x300 Code: 48 c1 ee 03 41 54 48 01 d1 48 01 d6 55 53 48 83 ec 20 80 39 00 0f 85 30 02 00 00 49 8b 6f 30 4c 8d 75 10 4c 89 f0 48 c1 e8 03 <0f> b6 3c 10 4c 89 f0 83 e0 07 83 c0 03 40 38 f8 7c 09 40 84 ff 0f RSP: 0018:ffff88811d97f940 EFLAGS: 00010202 RAX: 0000000000000002 RBX: ffff88823c6b5b28 RCX: ffffed10478d6b6b RDX: dffffc0000000000 RSI: ffffed10478d6b6c RDI: ffff88823c6b5b28 RBP: 0000000000000000 R08: ffff88823c6b5b58 R09: ffff88823c6b5b60 R10: ffff88811d97f957 R11: 0000000000000010 R12: 00000000000a801d R13: ffff88810d8b35d8 R14: 0000000000000010 R15: ffff88823c6b5b28 FS: 0000000000000000(0000) GS:ffff88823c680000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000561858ad7258 CR3: 000000007729e001 CR4: 0000000000170ef0 Call Trace: <TASK> ? die_addr+0x40/0xa0 ? exc_general_protection+0x154/0x230 ? asm_exc_general_protection+0x26/0x30 ? hrtimer_active+0x58/0x300 ? __pfx_mutex_lock+0x10/0x10 ? __pfx_locks_remove_file+0x10/0x10 hrtimer_cancel+0x15/0x40 timerlat_fd_release+0x8e/0x1f0 ? security_file_release+0x43/0x80 __fput+0x372/0xb10 task_work_run+0x11e/0x1f0 ? _raw_spin_lock+0x85/0xe0 ? __pfx_task_work_run+0x10/0x10 ? poison_slab_object+0x109/0x170 ? do_exit+0x7a0/0x24b0 do_exit+0x7bd/0x24b0 ? __pfx_migrate_enable+0x10/0x10 ? __pfx_do_exit+0x10/0x10 ? __pfx_read_tsc+0x10/0x10 ? ktime_get+0x64/0x140 ? _raw_spin_lock_irq+0x86/0xe0 do_group_exit+0xb0/0x220 get_signal+0x17ba/0x1b50 ? vfs_read+0x179/0xa40 ? timerlat_fd_read+0x30b/0x9d0 ? __pfx_get_signal+0x10/0x10 ? __pfx_timerlat_fd_read+0x10/0x10 arch_do_signal_or_restart+0x8c/0x570 ? __pfx_arch_do_signal_or_restart+0x10/0x10 ? vfs_read+0x179/0xa40 ? ksys_read+0xfe/0x1d0 ? __pfx_ksys_read+0x10/0x10 syscall_exit_to_user_mode+0xbc/0x130 do_syscall_64+0x74/0x110 ? __pfx___rseq_handle_notify_resume+0x10/0x10 ? __pfx_ksys_read+0x10/0x10 ? fpregs_restore_userregs+0xdb/0x1e0 ? fpregs_restore_userregs+0xdb/0x1e0 ? syscall_exit_to_user_mode+0x116/0x130 ? do_syscall_64+0x74/0x110 ? do_syscall_64+0x74/0x110 ? do_syscall_64+0x74/0x110 entry_SYSCALL_64_after_hwframe+0x71/0x79 RIP: 0033:0x7ff0070eca9c Code: Unable to access opcode bytes at 0x7ff0070eca72. RSP: 002b:00007ff006dff8c0 EFLAGS: 00000246 ORIG_RAX: 0000000000000000 RAX: 0000000000000000 RBX: 0000000000000005 RCX: 00007ff0070eca9c RDX: 0000000000000400 RSI: 00007ff006dff9a0 RDI: 0000000000000003 RBP: 00007ff006dffde0 R08: 0000000000000000 R09: 00007ff000000ba0 R10: 00007ff007004b08 R11: 0000000000000246 R12: 0000000000000003 R13: 00007ff006dff9a0 R14: 0000000000000007 R15: 0000000000000008 </TASK> Modules linked in: snd_hda_intel snd_intel_dspcfg snd_intel_sdw_acpi snd_hda_codec snd_hwdep snd_hda_core ---[ end trace 0000000000000000 ]--- This is because it would mistakenly call kthread_stop() on a user space thread making it "exit" before it actually exits. Since kthreads are created based on global behavior, use a cpumask to know when kthreads are running and that they need to be shutdown before proceeding to do new work. Link: https://lore.kernel.org/all/20240820130001.124768-1-tglozar@redhat.com/ This was debugged by using the persistent ring buffer: Link: https://lore.kernel.org/all/20240823013902.135036960@goodmis.org/ Note, locking was originally used to fix this, but that proved to cause too many deadlocks to work around: https://lore.kernel.org/linux-trace-kernel/20240823102816.5e55753b@gandalf.local.home/ Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: "Luis Claudio R. Goncalves" <lgoncalv@redhat.com> Link: https://lore.kernel.org/20240904103428.08efdf4c@gandalf.local.home Fixes: e88ed22 ("tracing/timerlat: Add user-space interface") Reported-by: Tomas Glozar <tglozar@redhat.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
I've updated the patch set with a template-oriented idea: multiple variants of struct packed_field instead of a single one-size-fits-all, and a single pair of macros that works on any data type. I'm a bit concerned that in this case, the expanded code in sja1105 will blow up more than the rodata will be reduced, but that needs to be actually tested. Unfortunately, I ran out of steam on this particular topic right now, since I need to deal with more important things. I will pause for now and return later to complete the sja1105 conversion and test it. |
Thanks! Can take a look. I think I can probably figure out the issue with KBUILD_OUTPUT too. |
Sadly I figured out only today that there's a bug in the macro variants of pack_fields() and unpack_fields(). Here's the mistake in case you haven't already figured it out as well.
|
Bit surprising that gits regex for finding a function header doesn't work for macros. This confused me for a bit.
Ah, makes sense, we have to cast back to a proper pointer size, because otherwise it will break. Makes sense. |
I added your patch to my new PR at #2 |
Sadly I still get the "fatal error: generated/packing-checks.h: No such file or directory" until I repeat the build command for long enough that the build progresses.
|
I wonder if thats because you're using make uImage which somehow doesn't trigger the always-y goals? Hmmmm. That, or the include is missing a dependency: Eventually you do build it, which makes me think it must be an issue with parallelism. |
Maybe if we added the packing-checks file as a dependency of prepare in Kbuild.. |
I updated #2 again with a fix to make the packing-checks.h header a dependency of the prepare target, matching the other headers done in the root Kbuild. I also squashed all the fixes down into their respective patches. |
…rnel/git/netfilter/nf-next Pablo Neira Ayuso says: ==================== Netfilter updates for net-next The following patchset contains Netfilter updates for net-next: Patch vladimiroltean#1 adds ctnetlink support for kernel side filtering for deletions, from Changliang Wu. Patch vladimiroltean#2 updates nft_counter support to Use u64_stats_t, from Sebastian Andrzej Siewior. Patch #3 uses kmemdup_array() in all xtables frontends, from Yan Zhen. Patch #4 is a oneliner to use ERR_CAST() in nf_conntrack instead opencoded casting, from Shen Lichuan. Patch #5 removes unused argument in nftables .validate interface, from Florian Westphal. Patch torvalds#6 is a oneliner to correct a typo in nftables kdoc, from Simon Horman. Patch torvalds#7 fixes missing kdoc in nftables, also from Simon. Patch torvalds#8 updates nftables to handle timeout less than CONFIG_HZ. Patch torvalds#9 rejects element expiration if timeout is zero, otherwise it is silently ignored. Patch torvalds#10 disallows element expiration larger than timeout. Patch torvalds#11 removes unnecessary READ_ONCE annotation while mutex is held. Patch torvalds#12 adds missing READ_ONCE/WRITE_ONCE annotation in dynset. Patch torvalds#13 annotates data-races around element expiration. Patch torvalds#14 allocates timeout and expiration in one single set element extension, they are tighly couple, no reason to keep them separated anymore. Patch torvalds#15 updates nftables to interpret zero timeout element as never times out. Note that it is already possible to declare sets with elements that never time out but this generalizes to all kind of set with timeouts. Patch torvalds#16 supports for element timeout and expiration updates. * tag 'nf-next-24-09-06' of git://git.kernel.org/pub/scm/linux/kernel/git/netfilter/nf-next: netfilter: nf_tables: set element timeout update support netfilter: nf_tables: zero timeout means element never times out netfilter: nf_tables: consolidate timeout extension for elements netfilter: nf_tables: annotate data-races around element expiration netfilter: nft_dynset: annotate data-races around set timeout netfilter: nf_tables: remove annotation to access set timeout while holding lock netfilter: nf_tables: reject expiration higher than timeout netfilter: nf_tables: reject element expiration with no timeout netfilter: nf_tables: elements with timeout below CONFIG_HZ never expire netfilter: nf_tables: Add missing Kernel doc netfilter: nf_tables: Correct spelling in nf_tables.h netfilter: nf_tables: drop unused 3rd argument from validate callback ops netfilter: conntrack: Convert to use ERR_CAST() netfilter: Use kmemdup_array instead of kmemdup for multiple allocation netfilter: nft_counter: Use u64_stats_t for statistic. netfilter: ctnetlink: support CTA_FILTER for flush ==================== Link: https://patch.msgid.link/20240905232920.5481-1-pablo@netfilter.org Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Daniel Machon says: ==================== net: lan966x: use the newly introduced FDMA library This patch series is the second of a 2-part series [1], that adds a new common FDMA library for Microchip switch chips Sparx5 and lan966x. These chips share the same FDMA engine, and as such will benefit from a common library with a common implementation. This also has the benefit of removing a lot of open-coded bookkeeping and duplicate code for the two drivers. In this second series, the FDMA library will be taken into use by the lan966x switch driver. ################### # Example of use: # ################### - Initialize the rx and tx fdma structs with values for: number of DCB's, number of DB's, channel ID, DB size (data buffer size), and total size of the requested memory. Also provide two callbacks: nextptr_cb() and dataptr_cb() for getting the nextptr and dataptr. - Allocate memory using fdma_alloc_phys() or fdma_alloc_coherent(). - Initialize the DCB's with fdma_dcb_init(). - Add new DCB's with fdma_dcb_add(). - Free memory with fdma_free_phys() or fdma_free_coherent(). ##################### # Patch breakdown: # ##################### Patch vladimiroltean#1: select FDMA library for lan966x. Patch vladimiroltean#2: includes the fdma_api.h header and removes old symbols. Patch #3: replaces old rx and tx variables with equivalent ones from the fdma struct. Only the variables that can be changed without breaking traffic is changed in this patch. Patch #4: uses the library for allocation of rx buffers. This requires quite a bit of refactoring in this single patch. Patch #5: uses the library for adding DCB's in the rx path. Patch torvalds#6: uses the library for freeing rx buffers. Patch torvalds#7: uses the library for allocation of tx buffers. This requires quite a bit of refactoring in this single patch. Patch torvalds#8: uses the library for adding DCB's in the tx path. Patch torvalds#9: uses the library helpers in the tx path. Patch torvalds#10: ditch last_in_use variable and use library instead. Patch torvalds#11: uses library helpers throughout. Patch torvalds#12: refactor lan966x_fdma_reload() function. [1] https://lore.kernel.org/netdev/20240902-fdma-sparx5-v1-0-1e7d5e5a9f34@microchip.com/ Signed-off-by: Daniel Machon <daniel.machon@microchip.com> ==================== Link: https://patch.msgid.link/20240905-fdma-lan966x-v1-0-e083f8620165@microchip.com Signed-off-by: Paolo Abeni <pabeni@redhat.com>
It looks like there would be a total of 21 commits (not counting the sja1105 work), which is too much to do as a single series. How do you feel about me publishing the version that just fixes up the packing library and gets ice working? I.e. everything up to the pack_fields bits? I do like pack_fields, and I think we should implement it, but we can't send more than 15 patches to netdev, and I think thats a natural splitting point. |
The fixes for the 2 quirks and the KUnit tests should be split from the ice conversion, which should in turn be split from the sja1105 conversion. And the patches should be sent when they are as close as possible to their final state. All IMO. |
Yea, I don't want to send stuff we plan to fix later too much. I just wasn't sure much more we had to do. I think with the new _Generic pack_fields, things seem better.
The ice driver changes generally go through Intel Wired LAN, so almost certainly can't make this merge window given that anyways. I guess its more complicated when the changes also include the lib code, so I'm not sure if those would go straight to net-next. We typically go through IWL so that we get our internal testing team and review process covered. |
For now, I'm going to spend tomorrow running more tests on the ice driver |
I don't have a problem with the patches going through the iwl tree, as long as they end up in net-next in due time and reasonably don't delay other work. Though since they touch the top-level Kbuild file, it would be good if they got some proper external review as well - I see Masahiro Yamada practically maintains that file. |
I also have more work to do on the sja1105 driver, since bloat-o-meter says things aren't better at all in terms of size with split pack/unpack. I will make sja1105_static_config.c more systematic and see how things behave afterwards. I am not sure yet if this means any more changes to the code packing library.
|
Yea, we would definitely need to get some feedback on the generation aspect. Thats definitely even outside the scope of normal netdev review. |
Saved 12KB of text, for a 15% reduction in exchange for...
No gain in the data section.
And 4 KB of RO data, which increased the RO section by 13%. This reads to me like a significant text size reduction in exchange for ~4KB RO data? This seems positive. A net reduction in total of 8KB. I guess this isn't as significant as you hoped?
As far as I understand, -t and -d is data included within the -c output which splits everything up nicely, so we don't need to also check these. You can tell also because the -d shows the RO data, and the count matches, while the -t shows the text data and its count matches as well. |
This worked for me, using a simple C program to generate the packing checks.
I'm not 100% sure if everything is totally correct, and I also included my
ice driver changes as well as the u16 change, though I am still unclear
about that as well.