Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add CUDA demos #1139

Merged
merged 18 commits into from
Nov 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
344 changes: 344 additions & 0 deletions demos/CUDA/BlackScholes/BlackScholes.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,344 @@
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/*
* This sample evaluates fair call and put prices for a
* given set of European options by Black-Scholes formula.
* See supplied whitepaper for more explanations.
*/

#include <helper_functions.h> // helper functions for string parsing
#include <helper_cuda.h> // helper functions CUDA error checking and initialization

////////////////////////////////////////////////////////////////////////////////
// Process an array of optN options on CPU
////////////////////////////////////////////////////////////////////////////////
extern "C" void BlackScholesCPU(float *h_CallResult, float *h_PutResult,
float *h_StockPrice, float *h_OptionStrike,
float *h_OptionYears, float Riskfree,
float Volatility, int optN);

////////////////////////////////////////////////////////////////////////////////
// Process an array of OptN options on GPU
////////////////////////////////////////////////////////////////////////////////
#include "BlackScholes_kernel.cuh"

////////////////////////////////////////////////////////////////////////////////
// Helper function, returning uniformly distributed
// random float in [low, high] range
////////////////////////////////////////////////////////////////////////////////
float RandFloat(float low, float high) {
float t = (float)rand() / (float)RAND_MAX;
return (1.0f - t) * low + t * high;
}

////////////////////////////////////////////////////////////////////////////////
// Data configuration
////////////////////////////////////////////////////////////////////////////////
const int OPT_N = 4000000;
const int NUM_ITERATIONS = 512;

const int OPT_SZ = OPT_N * sizeof(float);
const float RISKFREE = 0.02f;
const float VOLATILITY = 0.30f;

#define DIV_UP(a, b) (((a) + (b)-1) / (b))

////////////////////////////////////////////////////////////////////////////////
// Main program
////////////////////////////////////////////////////////////////////////////////

/*
* DISCLAIMER: The following file has been slightly modified to ensure
* compatibility with Clad and to serve as a Clad demo. Specifically, parts of
* the original `main` function have been moved to a separate function to use
* `clad::gradient` on. Furthermore, Clad cannot clone checkCudaErrors
* successfully, so these calls have been omitted. The same applies to the
* cudaDeviceSynchronize function. New helper functions are included in another
* file and invoked here to verify the gradient's results. Since Clad cannot
* handle timers at the moment, the time measurement is included in
* `main` and doesn't time exclusively the original kernel execution, but the
* whole `launch` function and its gradient are timed in this version.
*
* The original file is available in NVIDIA's cuda-samples repository on GitHub.
*
* Relevant documentation regarding the problem at hand can be found in NVIDIA's
* cuda-samples repository. Using Clad, we compute some of the Greeks
* (sensitivities) for the Black-Scholes model and verify them against
* approximations of their theoretical values as denoted in Wikipedia
* (https://en.wikipedia.org/wiki/Black%E2%80%93Scholes_model).
*
* To build and run the demo, use the following command: make run
*/

#include "clad/Differentiator/Differentiator.h"
#include <helper_grad_verify.h>

void launch(float* h_CallResultCPU, float* h_CallResultGPU,
float* h_PutResultCPU, float* h_PutResultGPU, float* h_StockPrice,
float* h_OptionStrike, float* h_OptionYears) {

//'d_' prefix - GPU (device) memory space
float
// Results calculated by GPU
*d_CallResult = nullptr,
*d_PutResult = nullptr,
// GPU instance of input data
*d_StockPrice = nullptr, *d_OptionStrike = nullptr,
*d_OptionYears = nullptr;

printf("...allocating GPU memory for options.\n");
cudaMalloc((void**)&d_CallResult, OPT_SZ);
cudaMalloc((void**)&d_PutResult, OPT_SZ);
cudaMalloc((void**)&d_StockPrice, OPT_SZ);
cudaMalloc((void**)&d_OptionStrike, OPT_SZ);
cudaMalloc((void**)&d_OptionYears, OPT_SZ);

// Copy options data to GPU memory for further processing
printf("...copying input data to GPU mem.\n");
cudaMemcpy(d_StockPrice, h_StockPrice, OPT_SZ, cudaMemcpyHostToDevice);
cudaMemcpy(d_OptionStrike, h_OptionStrike, OPT_SZ, cudaMemcpyHostToDevice);
cudaMemcpy(d_OptionYears, h_OptionYears, OPT_SZ, cudaMemcpyHostToDevice);
printf("Data init done.\n\n");

printf("Executing Black-Scholes GPU kernel (%i iterations)...\n",
NUM_ITERATIONS);
int i;
for (i = 0; i < NUM_ITERATIONS; i++) {
BlackScholesGPU<<<DIV_UP((OPT_N / 2), 128), 128 /*480, 128*/>>>(
(float2 *)d_CallResult, (float2 *)d_PutResult, (float2 *)d_StockPrice,
(float2 *)d_OptionStrike, (float2 *)d_OptionYears, RISKFREE, VOLATILITY,
OPT_N);
}

// Both call and put is calculated

printf("\nReading back GPU results...\n");
// Read back GPU results to compare them to CPU results
cudaMemcpy(h_CallResultGPU, d_CallResult, OPT_SZ, cudaMemcpyDeviceToHost);
cudaMemcpy(h_PutResultGPU, d_PutResult, OPT_SZ, cudaMemcpyDeviceToHost);

printf("...releasing GPU memory.\n");
cudaFree(d_OptionYears);
cudaFree(d_OptionStrike);
cudaFree(d_StockPrice);
cudaFree(d_PutResult);
cudaFree(d_CallResult);
}

int main(int argc, char **argv) {
// Start logs
printf("[%s] - Starting...\n", argv[0]);

//'h_' prefix - CPU (host) memory space
float
// Results calculated by CPU for reference
*h_CallResultCPU,
*h_PutResultCPU,
// CPU copy of GPU results
*h_CallResultGPU, *h_PutResultGPU,
// CPU instance of input data
*h_StockPrice, *h_OptionStrike, *h_OptionYears;

double delta, ref, sum_delta, sum_ref, max_delta, L1norm, gpuTime;

StopWatchInterface *hTimer = NULL;
int i;

findCudaDevice(argc, (const char **)argv);

sdkCreateTimer(&hTimer);

printf("Initializing data...\n");
printf("...allocating CPU memory for options.\n");
h_CallResultCPU = (float *)malloc(OPT_SZ);
h_PutResultCPU = (float *)malloc(OPT_SZ);
h_CallResultGPU = (float *)malloc(OPT_SZ);
h_PutResultGPU = (float *)malloc(OPT_SZ);
h_StockPrice = (float *)malloc(OPT_SZ);
h_OptionStrike = (float *)malloc(OPT_SZ);
h_OptionYears = (float *)malloc(OPT_SZ);

printf("...generating input data in CPU mem.\n");
srand(5347);

// Generate options set
for (i = 0; i < OPT_N; i++) {
h_CallResultCPU[i] = 0.0f;
h_PutResultCPU[i] = -1.0f;
h_StockPrice[i] = RandFloat(5.0f, 30.0f);
h_OptionStrike[i] = RandFloat(1.0f, 100.0f);
h_OptionYears[i] = RandFloat(0.25f, 10.0f);
}

/*******************************************************************************/

// Compute gradients
auto callGrad = clad::gradient(
launch, "h_CallResultGPU, h_StockPrice, h_OptionStrike, h_OptionYears");
auto putGrad = clad::gradient(
launch, "h_PutResultGPU, h_StockPrice, h_OptionStrike, h_OptionYears");

// Declare and initialize the derivatives
float* d_CallResultGPU = (float*)malloc(OPT_SZ);
float* d_PutResultGPU = (float*)malloc(OPT_SZ);
float* d_StockPrice = (float*)calloc(OPT_N, sizeof(float));
float* d_OptionStrike = (float*)calloc(OPT_N, sizeof(float));
float* d_OptionYears = (float*)calloc(OPT_N, sizeof(float));

for (int i = 0; i < OPT_N; i++) {
d_CallResultGPU[i] = 1.0f;
d_PutResultGPU[i] = 1.0f;
}

/*******************************************************************************/

checkCudaErrors(cudaDeviceSynchronize());
sdkResetTimer(&hTimer);
sdkStartTimer(&hTimer);
// Compute the values and derivatives of the price of the call options
callGrad.execute(h_CallResultCPU, h_CallResultGPU, h_PutResultCPU,
h_PutResultGPU, h_StockPrice, h_OptionStrike, h_OptionYears,
d_CallResultGPU, d_StockPrice, d_OptionStrike,
d_OptionYears);

checkCudaErrors(cudaDeviceSynchronize());
sdkStopTimer(&hTimer);
gpuTime = sdkGetTimerValue(&hTimer) / NUM_ITERATIONS;

// Both call and put is calculated
printf("Options count : %i \n", 2 * OPT_N);
printf("BlackScholesGPU() time : %f msec\n", gpuTime);
printf("Effective memory bandwidth: %f GB/s\n",
((double)(5 * OPT_N * sizeof(float)) * 1E-9) / (gpuTime * 1E-3));
printf("Gigaoptions per second : %f \n\n",
((double)(2 * OPT_N) * 1E-9) / (gpuTime * 1E-3));

printf(
"BlackScholes, Throughput = %.4f GOptions/s, Time = %.5f s, Size = %u "
"options, NumDevsUsed = %u, Workgroup = %u\n",
(((double)(2.0 * OPT_N) * 1.0E-9) / (gpuTime * 1.0E-3)), gpuTime * 1e-3,
(2 * OPT_N), 1, 128);

printf("Checking the results...\n");
printf("...running CPU calculations.\n\n");
// Calculate options values on CPU
BlackScholesCPU(h_CallResultCPU, h_PutResultCPU, h_StockPrice, h_OptionStrike,
h_OptionYears, RISKFREE, VOLATILITY, OPT_N);

printf("Comparing the results...\n");
// Calculate max absolute difference and L1 distance
// between CPU and GPU results
sum_delta = 0;
sum_ref = 0;
max_delta = 0;

for (i = 0; i < OPT_N; i++) {
ref = h_CallResultCPU[i];
delta = fabs(h_CallResultCPU[i] - h_CallResultGPU[i]);

if (delta > max_delta) {
max_delta = delta;
}

sum_delta += delta;
sum_ref += fabs(ref);
}

L1norm = sum_delta / sum_ref;
printf("L1 norm: %E\n", L1norm);
printf("Max absolute error: %E\n\n", max_delta);

// Verify delta
computeL1norm<Call, Delta>(h_StockPrice, h_OptionStrike, h_OptionYears,
d_StockPrice);
// Verify derivatives with respect to the Strike price
computeL1norm<Call, dX>(h_StockPrice, h_OptionStrike, h_OptionYears,
d_OptionStrike);
// Verify theta
computeL1norm<Call, Theta>(h_StockPrice, h_OptionStrike, h_OptionYears,
d_OptionYears);
/*******************************************************************************/
// Re-initialize data for next gradient call
for (int i = 0; i < OPT_N; i++)
{
h_CallResultCPU[i] = 0.0f;
h_PutResultCPU[i] = -1.0f;
d_CallResultGPU[i] = 1.0f;
d_PutResultGPU[i] = 1.0f;
}
for (int i = 0; i < OPT_N; i++)
{
d_StockPrice[i] = 0.f;
d_OptionStrike[i] = 0.f;
d_OptionYears[i] = 0.f;
}
// Compute the values and derivatives of the price of the Put options
putGrad.execute(h_CallResultCPU, h_CallResultGPU, h_PutResultCPU,
h_PutResultGPU, h_StockPrice, h_OptionStrike, h_OptionYears,
d_PutResultGPU, d_StockPrice, d_OptionStrike, d_OptionYears);
// Verify delta
computeL1norm<Put, Delta>(h_StockPrice, h_OptionStrike, h_OptionYears,
d_StockPrice);
// Verify derivatives with respect to the Strike price
computeL1norm<Put, dX>(h_StockPrice, h_OptionStrike, h_OptionYears,
d_OptionStrike);
// Verify theta
computeL1norm<Put, Theta>(h_StockPrice, h_OptionStrike, h_OptionYears,
d_OptionYears);
/*******************************************************************************/

printf("Shutting down...\n");
printf("...releasing CPU memory.\n");
free(h_OptionYears);
free(h_OptionStrike);
free(h_StockPrice);
free(h_PutResultGPU);
free(h_CallResultGPU);
free(h_PutResultCPU);
free(h_CallResultCPU);
free(d_OptionYears);
free(d_OptionStrike);
free(d_StockPrice);
free(d_PutResultGPU);
free(d_CallResultGPU);
sdkDeleteTimer(&hTimer);
printf("Shutdown done.\n");

printf("\n[BlackScholes] - Test Summary\n");

if (L1norm > 1e-6) {
printf("Test failed!\n");
exit(EXIT_FAILURE);
}

printf(
"\nNOTE: The CUDA Samples are not meant for performance measurements. "
"Results may vary when GPU Boost is enabled.\n\n");
printf("Test passed\n");
exit(EXIT_SUCCESS);
}
Loading
Loading