Skip to content

Commit

Permalink
sagemathgh-38281: Addition of Chow ring ideal and Chow ring classes
Browse files Browse the repository at this point in the history
    
<!-- ^ Please provide a concise and informative title. -->
<!-- ^ Don't put issue numbers in the title, do this in the PR
description below. -->
<!-- ^ For example, instead of "Fixes sagemath#12345" use "Introduce new method
to calculate 1 + 2". -->
<!-- v Describe your changes below in detail. -->
<!-- v Why is this change required? What problem does it solve? -->
<!-- v If this PR resolves an open issue, please link to it here. For
example, "Fixes sagemath#12345". -->

This PR is focused on addition of classes for Chow ring ideal and Chow
ring of matroids.
[Check relevant issue.](sagemath#37987)
The ideals classes consist of the Chow ring ideal and Augmented Chow
ring ideal, with Gröbner basis for each of them.

The Chow ring class is an initial version.
@tscrim


### 📝 Checklist

<!-- Put an `x` in all the boxes that apply. -->

- [x] The title is concise and informative.
- [x] The description explains in detail what this PR is about.
- [x] I have linked a relevant issue or discussion.
- [x] I have created tests covering the changes.
- [x] I have updated the documentation and checked the documentation
preview.

### ⌛ Dependencies

<!-- List all open PRs that this PR logically depends on. For example,
-->
<!-- - sagemath#12345: short description why this is a dependency -->
<!-- - sagemath#34567: ... -->
    
URL: sagemath#38281
Reported by: 25shriya
Reviewer(s): 25shriya, Travis Scrimshaw
  • Loading branch information
Release Manager committed Nov 14, 2024
2 parents 209ae4c + a7eec7b commit f63dd37
Show file tree
Hide file tree
Showing 5 changed files with 1,209 additions and 82 deletions.
9 changes: 9 additions & 0 deletions src/doc/en/reference/matroids/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,15 @@ Concrete implementations
sage/matroids/rank_matroid
sage/matroids/graphic_matroid

Chow rings of matroids
----------------------

.. toctree::
:maxdepth: 1

sage/matroids/chow_ring_ideal
sage/matroids/chow_ring

Abstract matroid classes
------------------------

Expand Down
6 changes: 6 additions & 0 deletions src/doc/en/reference/references/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -261,6 +261,9 @@ REFERENCES:
finite Drinfeld modules.* manuscripta mathematica 93, 1 (01 Aug 1997),
369–379. https://doi.org/10.1007/BF02677478
.. [ANR2023] Robert Angarone, Anastasia Nathanson, and Victor Reiner. *Chow rings of
matroids as permutation representations*, 2023. :arxiv:`2309.14312`.
.. [AP1986] \S. Arnborg, A. Proskurowski,
*Characterization and Recognition of Partial 3-Trees*,
SIAM Journal of Alg. and Discrete Methods,
Expand Down Expand Up @@ -4928,6 +4931,9 @@ REFERENCES:
.. [MM2015] \J. Matherne and \G. Muller, *Computing upper cluster algebras*,
Int. Math. Res. Not. IMRN, 2015, 3121-3149.
.. [MM2022] Matthew Mastroeni and Jason McCullough. *Chow rings of matroids are
Koszul*. Mathematische Annalen, 387(3-4):1819-1851, November 2022.
.. [MMRS2022] Ruslan G. Marzo, Rafael A. Melo, Celso C. Ribeiro and
Marcio C. Santos: *New formulations and branch-and-cut procedures
for the longest induced path problem*. Computers & Operations
Expand Down
339 changes: 339 additions & 0 deletions src/sage/matroids/chow_ring.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,339 @@
r"""
Chow rings of matroids
AUTHORS:
- Shriya M
"""

from sage.matroids.chow_ring_ideal import ChowRingIdeal_nonaug, AugmentedChowRingIdeal_fy, AugmentedChowRingIdeal_atom_free
from sage.rings.quotient_ring import QuotientRing_generic
from sage.categories.graded_algebras_with_basis import GradedAlgebrasWithBasis
from sage.categories.commutative_rings import CommutativeRings

class ChowRing(QuotientRing_generic):
r"""
The Chow ring of a matroid.
The *Chow ring of the matroid* `M` is defined as the quotient ring
.. MATH::
A^*(M)_R := R[x_{F_1}, \ldots, x_{F_k}] / (I_M + J_M),
where `(I_M + J_M)` is the :class:`Chow ring ideal
<sage.matroids.chow_ring_ideal.ChowRingIdeal_nonaug>` of matroid `M`.
The *augmented Chow ring of matroid* `M` has two different presentations
as quotient rings:
The *Feitchner-Yuzvinsky presentation* is the quotient ring
.. MATH::
A(M)_R := R[y_{e_1}, \ldots, y_{e_n}, x_{F_1}, \ldots, x_{F_k}] / I_{FY}(M),
where `I_{FY}(M)` is the :class:`Feitchner-Yuzvinsky augmented Chow ring
ideal <sage.matroids.chow_ring_ideal.AugmentedChowRingIdeal_fy>`
of matroid `M`.
The *atom-free presentation* is the quotient ring
.. MATH::
A(M)_R := R[x_{F_1}, \ldots, x_{F_k}] / I_{af}(M),
where `I_{af}(M)` is the :class:`atom-free augmented Chow ring ideal
<sage.matroids.chow_ring_ideal.AugmentedChowRingIdeal_atom_free>`
of matroid `M`.
.. SEEALSO::
:mod:`sage.matroids.chow_ring_ideal`
INPUT:
- ``M`` -- matroid
- ``R`` -- commutative ring
- ``augmented`` -- boolean; when ``True``, this is the augmented
Chow ring and if ``False``, this is the non-augmented Chow ring
- ``presentation`` -- string (default: ``None``); one of the following
(ignored if ``augmented=False``)
* ``"fy"`` - the Feitchner-Yuzvinsky presentation
* ``"atom-free"`` - the atom-free presentation
REFERENCES:
- [FY2004]_
- [AHK2015]_
EXAMPLES::
sage: M1 = matroids.catalog.P8pp()
sage: ch = M1.chow_ring(QQ, False)
sage: ch
Chow ring of P8'': Matroid of rank 4 on 8 elements with 8 nonspanning circuits
over Rational Field
"""
def __init__(self, R, M, augmented, presentation=None):
r"""
Initialize ``self``.
EXAMPLES::
sage: ch = matroids.Wheel(3).chow_ring(QQ, False)
sage: TestSuite(ch).run()
"""
self._matroid = M
self._augmented = augmented
self._presentation = presentation
if augmented is True:
if presentation == 'fy':
self._ideal = AugmentedChowRingIdeal_fy(M, R)
elif presentation == 'atom-free':
self._ideal = AugmentedChowRingIdeal_atom_free(M, R)
else:
self._ideal = ChowRingIdeal_nonaug(M, R)
C = CommutativeRings().Quotients() & GradedAlgebrasWithBasis(R).FiniteDimensional()
QuotientRing_generic.__init__(self, R=self._ideal.ring(),
I=self._ideal,
names=self._ideal.ring().variable_names(),
category=C)

def _repr_(self):
r"""
EXAMPLES::
sage: M1 = matroids.catalog.Fano()
sage: ch = M1.chow_ring(QQ, False)
sage: ch
Chow ring of Fano: Binary matroid of rank 3 on 7 elements, type (3, 0)
over Rational Field
"""
output = "Chow ring of {}".format(self._matroid)
if self._augmented is True:
output = "Augmented " + output
if self._presentation == 'fy':
output += " in Feitchner-Yuzvinsky presentation"
elif self._presentation == 'atom-free':
output += " in atom-free presentation"
return output + " over " + repr(self.base_ring())

def _latex_(self):
r"""
Return the LaTeX output of the polynomial ring and Chow ring ideal.
EXAMPLES::
sage: M1 = matroids.Uniform(2,5)
sage: ch = M1.chow_ring(QQ, False)
sage: ch._latex_()
'A(\\begin{array}{l}\n\\text{\\texttt{U(2,{ }5):{ }Matroid{ }of{ }rank{ }2{ }on{ }5{ }elements{ }with{ }circuit{-}closures}}\\\\\n\\text{\\texttt{{\\char`\\{}2:{ }{\\char`\\{}{\\char`\\{}0,{ }1,{ }2,{ }3,{ }4{\\char`\\}}{\\char`\\}}{\\char`\\}}}}\n\\end{array})_{\\Bold{Q}}'
"""
from sage.misc.latex import latex
base = "A({})_{{{}}}"
if self._augmented:
base += "^*"
return base.format(latex(self._matroid), latex(self.base_ring()))

def matroid(self):
r"""
Return the matroid of ``self``.
EXAMPLES::
sage: ch = matroids.Uniform(3,6).chow_ring(QQ, True, 'fy')
sage: ch.matroid()
U(3, 6): Matroid of rank 3 on 6 elements with circuit-closures
{3: {{0, 1, 2, 3, 4, 5}}}
"""
return self._matroid

def _coerce_map_from_base_ring(self):
r"""
Disable the coercion from the base ring from the category.
TESTS::
sage: ch = matroids.Wheel(3).chow_ring(QQ, False)
sage: ch._coerce_map_from_base_ring() is None
True
"""
return None # don't need anything special

def basis(self):
r"""
Return the monomial basis of the given Chow ring.
EXAMPLES::
sage: ch = matroids.Uniform(3, 6).chow_ring(QQ, True, 'fy')
sage: ch.basis()
Family (1, B1, B1*B012345, B0, B0*B012345, B01, B01^2, B2,
B2*B012345, B02, B02^2, B12, B12^2, B3, B3*B012345, B03, B03^2,
B13, B13^2, B23, B23^2, B4, B4*B012345, B04, B04^2, B14, B14^2,
B24, B24^2, B34, B34^2, B5, B5*B012345, B05, B05^2, B15, B15^2,
B25, B25^2, B35, B35^2, B45, B45^2, B012345, B012345^2, B012345^3)
sage: set(ch.defining_ideal().normal_basis()) == set(ch.basis())
True
sage: ch = matroids.catalog.Fano().chow_ring(QQ, False)
sage: ch.basis()
Family (1, Abcd, Aace, Aabf, Adef, Aadg, Abeg, Acfg, Aabcdefg,
Aabcdefg^2)
sage: set(ch.defining_ideal().normal_basis()) == set(ch.basis())
True
sage: ch = matroids.Wheel(3).chow_ring(QQ, True, 'atom-free')
sage: ch.basis()
Family (1, A0, A0*A012345, A2, A2*A012345, A3, A3*A012345, A23,
A23^2, A1, A1*A012345, A013, A013^2, A4, A4*A012345, A04, A04^2,
A124, A124^2, A5, A5*A012345, A025, A025^2, A15, A15^2, A345,
A345^2, A012345, A012345^2, A012345^3)
sage: set(ch.defining_ideal().normal_basis()) == set(ch.basis())
True
"""
from sage.sets.family import Family
monomial_basis = self._ideal.normal_basis()
return Family([self.element_class(self, mon, reduce=False) for mon in monomial_basis])

class Element(QuotientRing_generic.Element):
def to_vector(self, order=None):
r"""
Return ``self`` as a (dense) free module vector.
EXAMPLES::
sage: ch = matroids.Uniform(3, 6).chow_ring(QQ, False)
sage: v = ch.an_element(); v
-A01 - A02 - A03 - A04 - A05 - A012345
sage: v.to_vector()
(0, -1, -1, 0, -1, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0)
"""
P = self.parent()
B = P.basis()
FM = P._dense_free_module()
f = self.lift()
return FM([f.monomial_coefficient(b.lift()) for b in B])

_vector_ = to_vector

def monomial_coefficients(self, copy=None):
r"""
Return the monomial coefficients of ``self``.
EXAMPLES::
sage: ch = matroids.catalog.NonFano().chow_ring(QQ, True, 'atom-free')
sage: v = ch.an_element(); v
Aa
sage: v.monomial_coefficients()
{0: 0, 1: 1, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 0,
10: 0, 11: 0, 12: 0, 13: 0, 14: 0, 15: 0, 16: 0, 17: 0,
18: 0, 19: 0, 20: 0, 21: 0, 22: 0, 23: 0, 24: 0, 25: 0,
26: 0, 27: 0, 28: 0, 29: 0, 30: 0, 31: 0, 32: 0, 33: 0,
34: 0, 35: 0}
"""
B = self.parent().basis()
f = self.lift()
return {i: f.monomial_coefficient(b.lift()) for i, b in enumerate(B)}

def degree(self):
r"""
Return the degree of ``self``.
EXAMPLES::
sage: ch = matroids.Uniform(3, 6).chow_ring(QQ, False)
sage: for b in ch.basis():
....: print(b, b.degree())
1 0
A01 1
A02 1
A12 1
A03 1
A13 1
A23 1
A04 1
A14 1
A24 1
A34 1
A05 1
A15 1
A25 1
A35 1
A45 1
A012345 1
A012345^2 2
sage: v = sum(ch.basis())
sage: v.degree()
2
"""
return self.lift().degree()

def homogeneous_degree(self):
r"""
Return the (homogeneous) degree of ``self`` if homogeneous
otherwise raise an error.
EXAMPLES::
sage: ch = matroids.catalog.Fano().chow_ring(QQ, True, 'fy')
sage: for b in ch.basis():
....: print(b, b.homogeneous_degree())
1 0
Ba 1
Ba*Babcdefg 2
Bb 1
Bb*Babcdefg 2
Bc 1
Bc*Babcdefg 2
Bd 1
Bd*Babcdefg 2
Bbcd 1
Bbcd^2 2
Be 1
Be*Babcdefg 2
Bace 1
Bace^2 2
Bf 1
Bf*Babcdefg 2
Babf 1
Babf^2 2
Bdef 1
Bdef^2 2
Bg 1
Bg*Babcdefg 2
Badg 1
Badg^2 2
Bbeg 1
Bbeg^2 2
Bcfg 1
Bcfg^2 2
Babcdefg 1
Babcdefg^2 2
Babcdefg^3 3
sage: v = sum(ch.basis()); v
Babcdefg^3 + Babf^2 + Bace^2 + Badg^2 + Bbcd^2 + Bbeg^2 +
Bcfg^2 + Bdef^2 + Ba*Babcdefg + Bb*Babcdefg + Bc*Babcdefg +
Bd*Babcdefg + Be*Babcdefg + Bf*Babcdefg + Bg*Babcdefg +
Babcdefg^2 + Ba + Bb + Bc + Bd + Be + Bf + Bg + Babf + Bace +
Badg + Bbcd + Bbeg + Bcfg + Bdef + Babcdefg + 1
sage: v.homogeneous_degree()
Traceback (most recent call last):
...
ValueError: element is not homogeneous
TESTS::
sage: ch = matroids.Wheel(3).chow_ring(QQ, True, 'atom-free')
sage: ch.zero().homogeneous_degree()
Traceback (most recent call last):
...
ValueError: the zero element does not have a well-defined degree
"""
if not self:
raise ValueError("the zero element does not have a well-defined degree")
f = self.lift()
if not f.is_homogeneous():
raise ValueError("element is not homogeneous")
return f.degree()
Loading

0 comments on commit f63dd37

Please sign in to comment.