Skip to content

varchasgopalaswamy/AutoUncertainties

Repository files navigation

AutoUncertainties

AutoUncertainties is a package that makes handling linear uncertainty propagation for scientific applications straightforward and automatic using auto-differentiation.

Supported Features

  • Scalars
  • Arrays, with support for most NumPy ufuncs and functions
  • Pandas Extension Type (see here)

Prerequisites

For array support:

  • jax
  • jaxlib
  • numpy

Installation

To install, simply run:

pip install auto_uncertainties

Build Documentation

To build the documentation locally, clone the repository, create a virtual Python environment (if desired), and run the following commands within the repository directory:

pip install auto_uncertainties[docs]
sphinx-build docs/source docs/build

Once built, the docs can be found under the docs/build subdirectory.

Basic Usage

  • Creating a scalar Uncertainty variable is relatively simple:

    >>> from auto_uncertainties import Uncertainty
    >>> value = 1.0
    >>> error = 0.1
    >>> u = Uncertainty(value, error)
    >>> u
    1 +/- 0.1

    As is creating a numpy array of Uncertainties:

    >>> from auto_uncertainties import Uncertainty
    >>> import numpy as np
    >>> value = np.linspace(start=0, stop=10, num=5)
    >>> error = np.ones_like(value)*0.1
    >>> u = Uncertainty(value, error)
    • (though, they are actually different classes!)

      >>> from auto_uncertainties import Uncertainty
      >>> value = 1.0
      >>> error = 0.1
      >>> u = Uncertainty(value, error)
      >>> type(u)
      <class 'auto_uncertainties.uncertainty.uncertainty_containers.ScalarUncertainty'>
      >>> from auto_uncertainties import Uncertainty
      >>> import numpy as np
      >>> value = np.linspace(start=0, stop=10, num=5)
      >>> error = np.ones_like(value)*0.1
      >>> u = Uncertainty(value, error)
      >>> type(u)
      <class 'auto_uncertainties.uncertainty.uncertainty_containers.VectorUncertainty'>
  • Scalar uncertainties implement all mathematical and logical dunder methods explicitly using linear uncertainty propagation.

    >>> from auto_uncertainties import Uncertainty
    >>> u = Uncertainty(10.0, 3.0)
    >>> v = Uncertainty(20.0, 4.0)
    >>> u + v
    30 +/- 5
  • Array uncertainties implement a large subset of the numpy ufuncs and methods using jax.grad or jax.jacfwd, depending on the output shape.

    >>> from auto_uncertainties import Uncertainty
    >>> import numpy as np
    >>> value = np.linspace(start=0, stop=10, num=5)
    >>> error = np.ones_like(value)*0.1
    >>> u = Uncertainty(value, error)
    >>> np.exp(u)
    [1 +/- 0.1, 12.1825 +/- 1.21825, 148.413 +/- 14.8413, 1808.04 +/- 180.804, 22026.5 +/- 2202.65]
    >>> np.sum(u)
    25 +/- 0.223607
    >>> u.sum()
    25 +/- 0.223607
    >>> np.sqrt(np.sum(error**2))
    0.223606797749979
  • The central value, uncertainty, and relative error are available as attributes:

    >>> from auto_uncertainties import Uncertainty
    >>> u = Uncertainty(10.0, 3.0)
    >>> u.value
    10.0
    >>> u.error
    3.0
    >>> u.rel
    0.3
  • To strip central values and uncertainty from arbitrary variables, accessor functions nominal_values and std_devs are provided:

    >>> from auto_uncertainties import nominal_values, std_devs
    >>> u = Uncertainty(10.0, 3.0)
    >>> v = 5.0
    >>> nominal_values(u)
    10.0
    >>> std_devs(u)
    3.0
    >>> nominal_values(v)
    5.0
    >>> std_devs(v)
    0.0
  • Displayed values are automatically rounded according to the Particle Data Group standard. This can be turned off using set_display_rounding:

    >>> from auto_uncertainties import set_display_rounding
    >>> set_display_rounding(False)
    >>> from auto_uncertainties import Uncertainty
    >>> import numpy as np
    >>> value = np.linspace(start=0, stop=10, num=5)
    >>> error = np.ones_like(value)*0.1
    >>> u = Uncertainty(value, error)
    >>> np.sum(u)
    25 +/- 0.223607
  • If numpy.array is called on an Uncertainty object, it will automatically get cast down to a numpy array (and lose uncertainty information!), and emit a warning. To make this an error, use set_downcast_error:

    >>> from auto_uncertainties import set_downcast_error
    >>> set_downcast_error(True)
    >>> from auto_uncertainties import Uncertainty
    >>> import numpy as np
    >>> value = np.linspace(start=0, stop=10, num=5)
    >>> error = np.ones_like(value)*0.1
    >>> u = Uncertainty(value, error)
    >>> np.array(u)
    Traceback (most recent call last):
        ...
    auto_uncertainties.exceptions.DowncastError: The uncertainty is stripped when downcasting to ndarray.

Inspirations

The class structure of Uncertainty, and the numpy ufunc implementation is heavily inspired by the excellent package Pint.

About

Drop-in Uncertainty Propagation with Automatic Differentiation

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages