Skip to content

Commit

Permalink
Addressing reviewers comments mengxr. Added confusion matrix
Browse files Browse the repository at this point in the history
  • Loading branch information
avulanov committed Jul 10, 2014
1 parent e3db569 commit 87fb11f
Show file tree
Hide file tree
Showing 2 changed files with 66 additions and 23 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -17,34 +17,52 @@

package org.apache.spark.mllib.evaluation

import org.apache.spark.annotation.Experimental
import org.apache.spark.rdd.RDD
import org.apache.spark.Logging
import org.apache.spark.SparkContext._
import org.apache.spark.annotation.Experimental
import org.apache.spark.rdd.RDD

import scala.collection.Map

/**
* ::Experimental::
* Evaluator for multiclass classification.
*
* @param predictionsAndLabels an RDD of (prediction, label) pairs.
* @param predictionAndLabels an RDD of (prediction, label) pairs.
*/
@Experimental
class MulticlassMetrics(predictionsAndLabels: RDD[(Double, Double)]) extends Logging {
class MulticlassMetrics(predictionAndLabels: RDD[(Double, Double)]) extends Logging {

private lazy val labelCountByClass: Map[Double, Long] = predictionsAndLabels.values.countByValue()
private lazy val labelCountByClass: Map[Double, Long] = predictionAndLabels.values.countByValue()
private lazy val labelCount: Long = labelCountByClass.values.sum
private lazy val tpByClass: Map[Double, Int] = predictionsAndLabels
private lazy val tpByClass: Map[Double, Int] = predictionAndLabels
.map { case (prediction, label) =>
(label, if (label == prediction) 1 else 0)
}.reduceByKey(_ + _)
(label, if (label == prediction) 1 else 0)
}.reduceByKey(_ + _)
.collectAsMap()
private lazy val fpByClass: Map[Double, Int] = predictionsAndLabels
private lazy val fpByClass: Map[Double, Int] = predictionAndLabels
.map { case (prediction, label) =>
(prediction, if (prediction != label) 1 else 0)
}.reduceByKey(_ + _)
(prediction, if (prediction != label) 1 else 0)
}.reduceByKey(_ + _)
.collectAsMap()
private lazy val confusions = predictionAndLabels.map {
case (prediction, label) => ((prediction, label), 1)
}.reduceByKey(_ + _).collectAsMap()

/**
* Returns confusion matrix:
* predicted classes are in columns,
* they are ordered by class label ascending,
* as in "labels"
*/
lazy val confusionMatrix: Array[Array[Int]] = {
val matrix = Array.ofDim[Int](labels.size, labels.size)
println(matrix.length, matrix(0).length)
for (i <- 0 to labels.size - 1; j <- 0 to labels.size - 1) {
matrix(j)(i) = confusions.getOrElse((labels(i), labels(j)), 0)
}
matrix
}

/**
* Returns true positive rate for a given label (category)
Expand Down Expand Up @@ -103,8 +121,8 @@ class MulticlassMetrics(predictionsAndLabels: RDD[(Double, Double)]) extends Log
/**
* Returns recall
* (equals to precision for multiclass classifier
* because sum of all false positives is equal to sum
* of all false negatives)
* because sum of all false positives is equal to sum
* of all false negatives)
*/
lazy val recall: Double = precision

Expand All @@ -114,6 +132,19 @@ class MulticlassMetrics(predictionsAndLabels: RDD[(Double, Double)]) extends Log
*/
lazy val fMeasure: Double = precision

/**
* Returns weighted true positive rate
* (equals to precision, recall and f-measure)
*/
lazy val weightedTruePositiveRate: Double = weightedRecall

/**
* Returns weighted false positive rate
*/
lazy val weightedFalsePositiveRate: Double = labelCountByClass.map { case (category, count) =>
falsePositiveRate(category) * count.toDouble / labelCount
}.sum

/**
* Returns weighted averaged recall
* (equals to precision, recall and f-measure)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -17,24 +17,23 @@

package org.apache.spark.mllib.evaluation

import org.scalatest.FunSuite

import org.apache.spark.mllib.util.LocalSparkContext
import org.scalatest.FunSuite

class MulticlassMetricsSuite extends FunSuite with LocalSparkContext {
test("Multiclass evaluation metrics") {
/*
* Confusion matrix for 3-class classification with total 9 instances:
* |2|1|1| true class0 (4 instances)
* |1|3|0| true class1 (4 instances)
* |0|0|1| true class2 (1 instance)
*
*/
* Confusion matrix for 3-class classification with total 9 instances:
* |2|1|1| true class0 (4 instances)
* |1|3|0| true class1 (4 instances)
* |0|0|1| true class2 (1 instance)
*/
val confusionMatrix = Array(Array(2, 1, 1), Array(1, 3, 0), Array(0, 0, 1))
val labels = Array(0.0, 1.0, 2.0)
val scoreAndLabels = sc.parallelize(
val predictionAndLabels = sc.parallelize(
Seq((0.0, 0.0), (0.0, 1.0), (0.0, 0.0), (1.0, 0.0), (1.0, 1.0),
(1.0, 1.0), (1.0, 1.0), (2.0, 2.0), (2.0, 0.0)), 2)
val metrics = new MulticlassMetrics(scoreAndLabels)
val metrics = new MulticlassMetrics(predictionAndLabels)
val delta = 0.0000001
val fpRate0 = 1.0 / (9 - 4)
val fpRate1 = 1.0 / (9 - 4)
Expand All @@ -48,6 +47,11 @@ class MulticlassMetricsSuite extends FunSuite with LocalSparkContext {
val f1measure0 = 2 * precision0 * recall0 / (precision0 + recall0)
val f1measure1 = 2 * precision1 * recall1 / (precision1 + recall1)
val f1measure2 = 2 * precision2 * recall2 / (precision2 + recall2)
val f2measure0 = (1 + 2 * 2) * precision0 * recall0 / (2 * 2 * precision0 + recall0)
val f2measure1 = (1 + 2 * 2) * precision1 * recall1 / (2 * 2 * precision1 + recall1)
val f2measure2 = (1 + 2 * 2) * precision2 * recall2 / (2 * 2 * precision2 + recall2)

assert(metrics.confusionMatrix.deep == confusionMatrix.deep)
assert(math.abs(metrics.falsePositiveRate(0.0) - fpRate0) < delta)
assert(math.abs(metrics.falsePositiveRate(1.0) - fpRate1) < delta)
assert(math.abs(metrics.falsePositiveRate(2.0) - fpRate2) < delta)
Expand All @@ -60,17 +64,25 @@ class MulticlassMetricsSuite extends FunSuite with LocalSparkContext {
assert(math.abs(metrics.fMeasure(0.0) - f1measure0) < delta)
assert(math.abs(metrics.fMeasure(1.0) - f1measure1) < delta)
assert(math.abs(metrics.fMeasure(2.0) - f1measure2) < delta)
assert(math.abs(metrics.fMeasure(0.0, 2.0) - f2measure0) < delta)
assert(math.abs(metrics.fMeasure(1.0, 2.0) - f2measure1) < delta)
assert(math.abs(metrics.fMeasure(2.0, 2.0) - f2measure2) < delta)

assert(math.abs(metrics.recall -
(2.0 + 3.0 + 1.0) / ((2 + 3 + 1) + (1 + 1 + 1))) < delta)
assert(math.abs(metrics.recall - metrics.precision) < delta)
assert(math.abs(metrics.recall - metrics.fMeasure) < delta)
assert(math.abs(metrics.recall - metrics.weightedRecall) < delta)
assert(math.abs(metrics.weightedFalsePositiveRate -
((4.0 / 9) * fpRate0 + (4.0 / 9) * fpRate1 + (1.0 / 9) * fpRate2)) < delta)
assert(math.abs(metrics.weightedPrecision -
((4.0 / 9) * precision0 + (4.0 / 9) * precision1 + (1.0 / 9) * precision2)) < delta)
assert(math.abs(metrics.weightedRecall -
((4.0 / 9) * recall0 + (4.0 / 9) * recall1 + (1.0 / 9) * recall2)) < delta)
assert(math.abs(metrics.weightedFMeasure -
((4.0 / 9) * f1measure0 + (4.0 / 9) * f1measure1 + (1.0 / 9) * f1measure2)) < delta)
assert(math.abs(metrics.weightedFMeasure(2.0) -
((4.0 / 9) * f2measure0 + (4.0 / 9) * f2measure1 + (1.0 / 9) * f2measure2)) < delta)
assert(metrics.labels.sameElements(labels))
}
}

0 comments on commit 87fb11f

Please sign in to comment.