forked from apache/spark
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
SPARK-1782: svd for sparse matrix using ARPACK
copy ARPACK dsaupd/dseupd code from latest breeze change RowMatrix to use sparse SVD change tests for sparse SVD All tests passed. I will run it against some large matrices. Author: Li Pu <lpu@twitter.com> Author: Xiangrui Meng <meng@databricks.com> Author: Li Pu <li.pu@outlook.com> Closes apache#964 from vrilleup/master and squashes the following commits: 7312ec1 [Li Pu] very minor comment fix 4c618e9 [Li Pu] Merge pull request #1 from mengxr/vrilleup-master a461082 [Xiangrui Meng] make superscript show up correctly in doc 861ec48 [Xiangrui Meng] simplify axpy 62969fa [Xiangrui Meng] use BDV directly in symmetricEigs change the computation mode to local-svd, local-eigs, and dist-eigs update tests and docs c273771 [Li Pu] automatically determine SVD compute mode and parameters 7148426 [Li Pu] improve RowMatrix multiply 5543cce [Li Pu] improve svd api 819824b [Li Pu] add flag for dense svd or sparse svd eb15100 [Li Pu] fix binary compatibility 4c7aec3 [Li Pu] improve comments e7850ed [Li Pu] use aggregate and axpy 827411b [Li Pu] fix EOF new line 9c80515 [Li Pu] use non-sparse implementation when k = n fe983b0 [Li Pu] improve scala style 96d2ecb [Li Pu] improve eigenvalue sorting e1db950 [Li Pu] SPARK-1782: svd for sparse matrix using ARPACK
- Loading branch information
Showing
3 changed files
with
339 additions
and
60 deletions.
There are no files selected for viewing
157 changes: 157 additions & 0 deletions
157
mllib/src/main/scala/org/apache/spark/mllib/linalg/EigenValueDecomposition.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,157 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.mllib.linalg | ||
|
||
import breeze.linalg.{DenseMatrix => BDM, DenseVector => BDV} | ||
import com.github.fommil.netlib.ARPACK | ||
import org.netlib.util.{intW, doubleW} | ||
|
||
import org.apache.spark.annotation.Experimental | ||
|
||
/** | ||
* :: Experimental :: | ||
* Compute eigen-decomposition. | ||
*/ | ||
@Experimental | ||
private[mllib] object EigenValueDecomposition { | ||
/** | ||
* Compute the leading k eigenvalues and eigenvectors on a symmetric square matrix using ARPACK. | ||
* The caller needs to ensure that the input matrix is real symmetric. This function requires | ||
* memory for `n*(4*k+4)` doubles. | ||
* | ||
* @param mul a function that multiplies the symmetric matrix with a DenseVector. | ||
* @param n dimension of the square matrix (maximum Int.MaxValue). | ||
* @param k number of leading eigenvalues required, 0 < k < n. | ||
* @param tol tolerance of the eigs computation. | ||
* @param maxIterations the maximum number of Arnoldi update iterations. | ||
* @return a dense vector of eigenvalues in descending order and a dense matrix of eigenvectors | ||
* (columns of the matrix). | ||
* @note The number of computed eigenvalues might be smaller than k when some Ritz values do not | ||
* satisfy the convergence criterion specified by tol (see ARPACK Users Guide, Chapter 4.6 | ||
* for more details). The maximum number of Arnoldi update iterations is set to 300 in this | ||
* function. | ||
*/ | ||
private[mllib] def symmetricEigs( | ||
mul: BDV[Double] => BDV[Double], | ||
n: Int, | ||
k: Int, | ||
tol: Double, | ||
maxIterations: Int): (BDV[Double], BDM[Double]) = { | ||
// TODO: remove this function and use eigs in breeze when switching breeze version | ||
require(n > k, s"Number of required eigenvalues $k must be smaller than matrix dimension $n") | ||
|
||
val arpack = ARPACK.getInstance() | ||
|
||
// tolerance used in stopping criterion | ||
val tolW = new doubleW(tol) | ||
// number of desired eigenvalues, 0 < nev < n | ||
val nev = new intW(k) | ||
// nev Lanczos vectors are generated in the first iteration | ||
// ncv-nev Lanczos vectors are generated in each subsequent iteration | ||
// ncv must be smaller than n | ||
val ncv = math.min(2 * k, n) | ||
|
||
// "I" for standard eigenvalue problem, "G" for generalized eigenvalue problem | ||
val bmat = "I" | ||
// "LM" : compute the NEV largest (in magnitude) eigenvalues | ||
val which = "LM" | ||
|
||
var iparam = new Array[Int](11) | ||
// use exact shift in each iteration | ||
iparam(0) = 1 | ||
// maximum number of Arnoldi update iterations, or the actual number of iterations on output | ||
iparam(2) = maxIterations | ||
// Mode 1: A*x = lambda*x, A symmetric | ||
iparam(6) = 1 | ||
|
||
var ido = new intW(0) | ||
var info = new intW(0) | ||
var resid = new Array[Double](n) | ||
var v = new Array[Double](n * ncv) | ||
var workd = new Array[Double](n * 3) | ||
var workl = new Array[Double](ncv * (ncv + 8)) | ||
var ipntr = new Array[Int](11) | ||
|
||
// call ARPACK's reverse communication, first iteration with ido = 0 | ||
arpack.dsaupd(ido, bmat, n, which, nev.`val`, tolW, resid, ncv, v, n, iparam, ipntr, workd, | ||
workl, workl.length, info) | ||
|
||
val w = BDV(workd) | ||
|
||
// ido = 99 : done flag in reverse communication | ||
while (ido.`val` != 99) { | ||
if (ido.`val` != -1 && ido.`val` != 1) { | ||
throw new IllegalStateException("ARPACK returns ido = " + ido.`val` + | ||
" This flag is not compatible with Mode 1: A*x = lambda*x, A symmetric.") | ||
} | ||
// multiply working vector with the matrix | ||
val inputOffset = ipntr(0) - 1 | ||
val outputOffset = ipntr(1) - 1 | ||
val x = w.slice(inputOffset, inputOffset + n) | ||
val y = w.slice(outputOffset, outputOffset + n) | ||
y := mul(x) | ||
// call ARPACK's reverse communication | ||
arpack.dsaupd(ido, bmat, n, which, nev.`val`, tolW, resid, ncv, v, n, iparam, ipntr, | ||
workd, workl, workl.length, info) | ||
} | ||
|
||
if (info.`val` != 0) { | ||
info.`val` match { | ||
case 1 => throw new IllegalStateException("ARPACK returns non-zero info = " + info.`val` + | ||
" Maximum number of iterations taken. (Refer ARPACK user guide for details)") | ||
case 2 => throw new IllegalStateException("ARPACK returns non-zero info = " + info.`val` + | ||
" No shifts could be applied. Try to increase NCV. " + | ||
"(Refer ARPACK user guide for details)") | ||
case _ => throw new IllegalStateException("ARPACK returns non-zero info = " + info.`val` + | ||
" Please refer ARPACK user guide for error message.") | ||
} | ||
} | ||
|
||
val d = new Array[Double](nev.`val`) | ||
val select = new Array[Boolean](ncv) | ||
// copy the Ritz vectors | ||
val z = java.util.Arrays.copyOfRange(v, 0, nev.`val` * n) | ||
|
||
// call ARPACK's post-processing for eigenvectors | ||
arpack.dseupd(true, "A", select, d, z, n, 0.0, bmat, n, which, nev, tol, resid, ncv, v, n, | ||
iparam, ipntr, workd, workl, workl.length, info) | ||
|
||
// number of computed eigenvalues, might be smaller than k | ||
val computed = iparam(4) | ||
|
||
val eigenPairs = java.util.Arrays.copyOfRange(d, 0, computed).zipWithIndex.map { r => | ||
(r._1, java.util.Arrays.copyOfRange(z, r._2 * n, r._2 * n + n)) | ||
} | ||
|
||
// sort the eigen-pairs in descending order | ||
val sortedEigenPairs = eigenPairs.sortBy(- _._1) | ||
|
||
// copy eigenvectors in descending order of eigenvalues | ||
val sortedU = BDM.zeros[Double](n, computed) | ||
sortedEigenPairs.zipWithIndex.foreach { r => | ||
val b = r._2 * n | ||
var i = 0 | ||
while (i < n) { | ||
sortedU.data(b + i) = r._1._2(i) | ||
i += 1 | ||
} | ||
} | ||
|
||
(BDV[Double](sortedEigenPairs.map(_._1)), sortedU) | ||
} | ||
} |
Oops, something went wrong.