Skip to content

This repository contains the implementation of a Unet neural network to perform the segmentation task in MRI. The algorithm learns to recognize some patterns through convolutions and segment the area of possible tumors in the brain.

Notifications You must be signed in to change notification settings

vannisson/UnetBrainTumorSegmentation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 

Repository files navigation

UnetBrainTumorSegmentation

This notebook contains the implementation of a neural network U-net for brain tumor segmentation in magnetic resonance images. The images and masks used in the training are available at this link: https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation

  • Problem definition

Brain tumors represent a complex and serious condition that affects millions of individuals worldwide. The diagnosis of these tumors can be a challenging process, especially in cases of small or diffuse tumors. Imaging technology, such as magnetic resonance imaging (MRI), is an important tool for aiding in the diagnosis of brain tumors. However, image analysis can be time-consuming and requires specialized knowledge.

  • A possible solution

In this context, the use of artificial intelligence (AI) algorithms emerges as a promising alternative to assist in the identification of brain tumors in MRI images. AI algorithms can be trained to identify specific patterns and features in medical data, aiding in the detection of tumors with greater accuracy and efficiency. Additionally, AI can be used to segment the tumors and classify them according to their degree of malignancy.

The U-net architecture is a convolutional neural network that has been widely used in medical image segmentation tasks. Initially proposed for the segmentation of biological cell images, its application was extended to the segmentation of brain tumors in MRI images.

  • Some results

image

  • References
  1. RONNEBERGER, O.; FISCHER, P.; BROX, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv preprint arXiv:1505.04597, 2015.

  2. Zheng, P., Zhu, X. & Guo, W. Brain tumour segmentation based on an improved U-Net. BMC Med Imaging 22, 199 (2022).

About

This repository contains the implementation of a Unet neural network to perform the segmentation task in MRI. The algorithm learns to recognize some patterns through convolutions and segment the area of possible tumors in the brain.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published