Skip to content

Unsupervised-ML---K-Means-Clustering-Non-Hierarchical-Clustering-Univ. Use Elbow Graph to find optimum number of clusters (K value) from K values range. The K-means algorithm aims to choose centroids that minimise the inertia, or within-cluster sum-of-squares criterion WCSS. Plot K values range vs WCSS to get Elbow graph for choosing K (no. of c…

Notifications You must be signed in to change notification settings

vaitybharati/P30.-Unsupervised-ML---K-Means-Clustering-Non-Hierarchical-Clustering-Univ.-

Repository files navigation

P30.-Unsupervised-ML---K-Means-Clustering-Non-Hierarchical-Clustering-Univ.

Import libraries

Import dataset

Create Normalized data frame

Use Elbow Graph to find optimum number of clusters (K value) from K values range

The K-means algorithm aims to choose centroids that minimise the inertia, or within-cluster sum-of-squares criterion WCSS

Plot K values range vs WCSS to get Elbow graph for choosing K (no. of clusters)

Build Cluster algorithm using K=4 and K=3

Assign clusters to the data set

Compute the centroids

Plot the clusters

About

Unsupervised-ML---K-Means-Clustering-Non-Hierarchical-Clustering-Univ. Use Elbow Graph to find optimum number of clusters (K value) from K values range. The K-means algorithm aims to choose centroids that minimise the inertia, or within-cluster sum-of-squares criterion WCSS. Plot K values range vs WCSS to get Elbow graph for choosing K (no. of c…

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published