Skip to content

vaishn99/Important-Papers-Blogs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 

Repository files navigation

Important papers and blogs on Generative modelling

classical generative model :

  1. https://cs229.stanford.edu/notes2021fall/cs229-notes8.pdf (Note on EM Algoithm,ELBO maximisation from stanford)
  2. https://youtu.be/LmpkKwsyQj4 (Anant Avati's lecture on K-means--> GMM-->>EM algorithm,A Must watch)
  3. https://cs229.stanford.edu/summer2019/cs229-notes9.pdf (Factor analysis (A latent space model) lecture notes).
  4. https://www.countbayesie.com/blog/2017/5/9/kullback-leibler-divergence-explained(A good blog that explains about KL Divergence)
  5. https://stillbreeze.github.io/Variational-Inference-and-Expectation-Maximization/ (On Expectation Maximization)

Vanilla VAE :

  1. http://stillbreeze.github.io/Variational-Inference-and- Expectation-Maximization/
  2. https://www.cs.cmu.edu/~tom/10-702/Zoubin-702.pdf
  3. https://arxiv.org/pdf/1312.6114.pdf (VAE base paper)
  4. https://arxiv.org/pdf/1606.05908.pdf (A tutorial on Variational Auto-Encoder)
  5. https://gregorygundersen.com/blog/2018/04/29/ reparameterization/(A really good blog on reparametrisation)
  6. http://approximateinference.org/accepted/HoffmanJohnson2016.pdf (ELBO Paper)

Some of the important extensions over Vanilla VAE:

  1. https://openreview.net/references/pdf?id=Sy2fzU9gl (Beta -VAE base paper)
  2. https://arxiv.org/pdf/1804.03599.pdf (discusses about dissentanglement in Beta-VAE)
  3. https://arxiv.org/pdf/1706.02262.pdf (Info- VAE)
  4. https://arxiv.org/abs/1705.07120 (VAE with vamp Prior)
  5. https://ml.berkeley.edu/blog/posts/vq-vae/ (Vector quantised VAE)

Matrix completion approach(Classical): SVD,CUR,PQ

  1. Good paper on randomised SVD (recent) : https://arxiv.org/pdf/1608.02148.pdf
  2. CUR decomposition Base paper : https://www.pnas.org/doi/full/10.1073/pnas.0803205106
  3. Good material for understanding CUR better (recent) : https://arxiv.org/abs/1907.12668
  4. PQ Decomposition blog : https://towardsdatascience.com/recommendation-system-matrix-factorization-d61978660b4b
  5. Stanford mini lecture(inside a playlist) : https://youtu.be/SO1KTzuKTSI

Neural Collaborative Filtering(NCF,Deep learning based):

  1. NCF base paper : https://arxiv.org/pdf/1708.05031.pdf

Some blogs that I followed (Will make life easier)

Important papers on GAN

Score-Based models:

Will be updated soon ...

Energy Based models:

Will be updated soon ...

Diffusion models:

  • Understanding Diffusion Models: A Unified Perspective:An important paper that connects VAE to diffusion through Heirarchical VAE . (https://arxiv.org/abs/2208.11970)

RL-reference materials:

About

Contain my understanding about the listed papers

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published