Skip to content

Commit

Permalink
Combinatorial combinations
Browse files Browse the repository at this point in the history
  • Loading branch information
v-- committed Dec 19, 2024
1 parent cf62a2f commit fd6b464
Show file tree
Hide file tree
Showing 8 changed files with 399 additions and 91 deletions.
10 changes: 0 additions & 10 deletions bibliography/books.bib
Original file line number Diff line number Diff line change
Expand Up @@ -1693,16 +1693,6 @@ @book{Архангельский1988Множества
title = {Канторовская теория множеств}
}

@book{БелоусовВласов2012Комбинаторика,
author = {Алексей Иванович Белоусов and Павел Александрович Власов},
date = {2012},
language = {russian},
publisher = {Издательство МГТУ},
shortauthor = {Belousov and Vlаsov},
subtitle = {Методические указания к выполнению домашнего задания},
title = {Элементы комбинаторики}
}

@book{БелоусовТкачёв2004ДискретнаяМатематика,
author = {Алексей Белоусов and Сергей Ткачёв},
date = {2004},
Expand Down
22 changes: 5 additions & 17 deletions figures/con__pascals_triangle.asy
Original file line number Diff line number Diff line change
@@ -1,32 +1,20 @@
unitsize(3.5cm);

pair A = (1, sqrt(3));
pair B = (0, 0);
pair C = (2, 0);
unitsize(1cm);

int n = 7;
int[][] values = new int[n][n];

for (int k = 0; k < n; ++k) {
draw(B + k / n * (A - B) -- C + k / n * (A - C), mediumgray);
draw(A + k / n * (B - A) -- C + k / n * (B - C), mediumgray);
draw(A + k / n * (C - A) -- B + k / n * (C - B), mediumgray);
}
pair o = (0, 0);
pair u = unit((1, -sqrt(3)));
pair v = unit((1, sqrt(3)));

for (int i = 0; i < n; ++i) {
for (int j = 0; i + j < n; ++j) {
pair translation = i / n * (B - A) + j / n * (C - A);
pair A_ = A + translation;
pair B_ = B + (n - 1) / n * (A - B) + translation;
pair C_ = C + (n - 1) / n * (A - C) + translation;
pair pos = (A_ + B_ + C_) / 3;

if (i == 0 || j == 0) {
values[i][j] = 1;
} else {
values[i][j] = values[i - 1][j] + values[i][j - 1];
}

label(string(values[i][j]), pos);
label(string(values[i][j]), i * u - j * v);
}
}
Original file line number Diff line number Diff line change
@@ -1,7 +1,5 @@
unitsize(1.3cm);

from notebook access PointLattice;

pair o = (0, 0);
pair u = (1, 0) / 2;
pair v = (1, -sqrt(3)) / 4;
Expand Down
435 changes: 382 additions & 53 deletions text/enumerative_combinatorics.tex

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion text/field_extensions.tex
Original file line number Diff line number Diff line change
Expand Up @@ -570,7 +570,7 @@ \section{Field extensions}\label{sec:field_extensions}
It is also the minimal polynomial of \( \zeta + 1 \) because
\begin{equation*}
(\zeta + 1)^2 + \zeta + \underbrace{1 + 1}_0
\reloset {\eqref{eq:thm:newtons_binomial_theorem_positive_characteristic}} =
\reloset {\eqref{eq:thm:binomial_theorem_positive_characteristic}} =
(\zeta^2 + 1) + \zeta
\reloset {\eqref{eq:ex:def:finite_field/f4/minimal/characteristic}} =
0.
Expand Down
2 changes: 1 addition & 1 deletion text/figurate_numbers.tex
Original file line number Diff line number Diff line change
Expand Up @@ -410,7 +410,7 @@ \section{Figurate numbers}\label{sec:figurate_numbers}

\thmitem{ex:def:fermats_equation/complex} \Fullref{thm:fundamental_theorem_of_algebra} implies that the equation \( X^n - (a^n + b^n) \) has a solution for any pair \( (a, b) \) of complex numbers.

\thmitem{ex:def:fermats_equation/finite} Over the \hyperref[def:finite_field]{finite field} \( \BbbF_q \), \fullref{thm:newtons_binomial_theorem_positive_characteristic} implies that
\thmitem{ex:def:fermats_equation/finite} Over the \hyperref[def:finite_field]{finite field} \( \BbbF_q \), \fullref{thm:binomial_theorem_positive_characteristic} implies that
\begin{equation*}
a^q + b^q = (a + b)^q.
\end{equation*}
Expand Down
3 changes: 3 additions & 0 deletions text/lattice_fixed_points.tex
Original file line number Diff line number Diff line change
Expand Up @@ -93,6 +93,9 @@ \section{Lattice fixed points}\label{sec:lattice_fixed_points}
\begin{definition}\label{def:scott_continuity}\mcite[56]{Grätzer2011Lattices}
We say that a map between \hyperref[def:complete_lattice]{complete lattices} is \term{Scott-continuous} if it preserves joins of \hyperref[def:directed_set]{upward-directed families}.
\end{definition}
\begin{comments}
\item Instead of complete lattices, we can work over \hyperref[def:partially_ordered_set]{partially ordered sets} closed under upward-directed suprema. \incite[def. 8.1]{DaveyPriestley2002Lattices} call such a partially ordered sets \enquote{complete}, which unfortunately conflicts with our notion of complete lattice. \incite[192]{Birkhoff1967Lattices} instead requires all \hyperref[def:partial_order_chain/chain]{chains} to have a supremum and calls such partially ordered sets \enquote{inductive}. \incite[83]{БелоусовТкачёв2004ДискретнаяМатематика} calls a partially ordered set \enquote{индуктивным} (\enquote{inductive}) if it satisfies Davey and Priestley's condition.
\end{comments}

\begin{proposition}\label{thm:def:scott_continuity}
\hyperref[def:scott_continuity]{Scott-continuous} maps have the following basic properties:
Expand Down
14 changes: 7 additions & 7 deletions text/primitive_roots.tex
Original file line number Diff line number Diff line change
Expand Up @@ -55,12 +55,12 @@ \section{Primitive roots}\label{sec:primitive_elements}
Then \( \BbbK \) contains \( m \) distinct \( n \)-th roots of unity, each with multiplicity \( p^e \).
\end{lemma}
\begin{proof}
\Fullref{thm:newtons_binomial_theorem_positive_characteristic} implies that
\Fullref{thm:binomial_theorem_positive_characteristic} implies that
\begin{equation}\label{eq:thm:roots_of_unity_multiplicity/proof}
X^n - 1
=
X^{m \cdot p^e} - 1^{p^e}
\reloset {\eqref{eq:thm:newtons_binomial_theorem_positive_characteristic}} =
\reloset {\eqref{eq:thm:binomial_theorem_positive_characteristic}} =
(X^m - 1)^{p^e}.
\end{equation}

Expand Down Expand Up @@ -589,7 +589,7 @@ \section{Primitive roots}\label{sec:primitive_elements}
\sum_{i=0}^n a_i^{q^k} \alpha^{i q^k}
=
\sum_{i=0}^n (a_i X^i)^{q^k}
\reloset {\eqref{eq:thm:newtons_binomial_theorem_positive_characteristic}} =
\reloset {\eqref{eq:thm:binomial_theorem_positive_characteristic}} =
\parens[\Big]{ \sum_{i=0}^n a_i X^i }^{q^k}
=
f(\alpha)^{q^k}
Expand Down Expand Up @@ -619,7 +619,7 @@ \section{Primitive roots}\label{sec:primitive_elements}
Indeed, if \( i > 0 \), we have
\begin{equation*}
\parens[\Big]{ \alpha^{q^{m-1}} - \alpha^{q^{i-1}} }^q
\reloset {\eqref{eq:thm:newtons_binomial_theorem_positive_characteristic}} =
\reloset {\eqref{eq:thm:binomial_theorem_positive_characteristic}} =
\alpha^{q^m} - \alpha^{q^i}
=
0,
Expand All @@ -645,7 +645,7 @@ \section{Primitive roots}\label{sec:primitive_elements}
g(X)^q
=
\prod_{i=0}^{m-1} (X - \alpha^{q^i})^q
\reloset {\eqref{eq:thm:newtons_binomial_theorem_positive_characteristic}} =
\reloset {\eqref{eq:thm:binomial_theorem_positive_characteristic}} =
\prod_{i=0}^{m-1} (X^q - \alpha^{q^{i + 1}})
=
\prod_{i=1}^m (X^q - \alpha^{q^i})
Expand All @@ -659,7 +659,7 @@ \section{Primitive roots}\label{sec:primitive_elements}
g(X)^q
=
\parens[\Big]{ \sum_{i=0}^m b_i X^i }^q
\reloset {\eqref{eq:thm:newtons_binomial_theorem_positive_characteristic}} =
\reloset {\eqref{eq:thm:binomial_theorem_positive_characteristic}} =
\sum_{i=0}^m b_i^q X^{qi}.
\end{equation*}

Expand Down Expand Up @@ -759,7 +759,7 @@ \section{Primitive roots}\label{sec:primitive_elements}
\alpha^8
\reloset {\eqref{ex:def:finite_field_primitive_polynomial/f2_cubic/alpha_fourth}} =
(\alpha^2 + \alpha + 1)^2
\reloset {\eqref{eq:thm:newtons_binomial_theorem_positive_characteristic}} =
\reloset {\eqref{eq:thm:binomial_theorem_positive_characteristic}} =
\alpha^4 + \alpha^2 + 1
\reloset {\eqref{ex:def:finite_field_primitive_polynomial/f2_cubic/alpha_fourth}} =
\cancel{\alpha^2} + \alpha + \cancel{1} + \cancel{\alpha^2} + \cancel{1}
Expand Down

0 comments on commit fd6b464

Please sign in to comment.