Skip to content

Commit

Permalink
Revamp the subsections on preoredered and partially ordered sets
Browse files Browse the repository at this point in the history
  • Loading branch information
v-- committed Dec 19, 2023
1 parent 1956270 commit c44356d
Show file tree
Hide file tree
Showing 28 changed files with 657 additions and 319 deletions.
119 changes: 119 additions & 0 deletions bibliography/books.bib
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,15 @@ @book{Birkhoff1948
year = {1948}
}

@book{Birkhoff1967,
author = {Garrett Birkhoff},
isbn = {978-0-8218-1025-5},
language = {english},
publisher = {American Mathematical Society},
title = {Lattice Theory},
year = {1967}
}

@book{Bollobas1998,
author = {Béla Bollobás},
isbn = {978-0-387-98488-9},
Expand Down Expand Up @@ -76,6 +85,16 @@ @book{Clarke2013
year = {2013}
}

@book{DaveyPriestley2002,
author = {Brian Davey and Hilary Priestley},
edition = {2},
isbn = {978-0-521-78451-1},
language = {english},
publisher = {Cambridge University Press},
title = {Introduction to lattices and order},
year = {2002}
}

@book{Deimling1985,
author = {Klaus Deimling},
isbn = {3540139281},
Expand Down Expand Up @@ -179,6 +198,28 @@ @book{GondranMinoux1984Graphs
year = {1984}
}

@book{Gratzer2011,
author = {George Grätzer},
doi = {10.1007/978-3-0348-0018-1},
isbn = {9783034800181},
language = {english},
publisher = {Springer Basel},
series = {[]},
title = {Lattice Theory: Foundation},
url = {http://dx.doi.org/10.1007/978-3-0348-0018-1},
year = {2011}
}

@book{Harzheim2005,
author = {Egbert Harzheim},
isbn = {0-387-24219-8},
language = {english},
publisher = {Springer},
series = {Advances in Mathematics},
title = {Ordered Sets},
year = {2005}
}

@book{Hinman2005,
author = {Peter G. Hinman},
isbn = {1-56881-262-0},
Expand Down Expand Up @@ -208,6 +249,15 @@ @book{Jacobson1985Vol2
year = {1985}
}

@book{Johnstone1982,
author = {Peter T. Johnstone},
isbn = {9780521238939},
language = {english},
publisher = {Cambridge University Press},
title = {Stone spaces},
year = {1982}
}

@book{Kaplansky1974Rings,
author = {Irving Kaplansky},
isbn = {0226424545},
Expand Down Expand Up @@ -507,6 +557,17 @@ @book{ГеновМиховскиМоллов1991
year = {1991}
}

@book{Гуров2013,
author = {Сергей Исаевич Гуров},
bbc = {22.144},
language = {russian},
shortauthor = {Sergey Isаevich Gurov},
subtitle = {Определения, свойства, примеры},
title = {Булевы алгебры, упорядоченные множества, решетки},
udc = {512(075.8)},
year = {2013}
}

@book{Гюзелев1873,
author = {Иван Гюзелев},
language = {bulgarian},
Expand All @@ -526,6 +587,30 @@ @book{ДочевДимитровЧуканов1976
year = {1976}
}

@book{Зорич2019Том1,
author = {Владимир Антонович Зорич},
edition = {10},
language = {russian},
publisher = {МЦНМО},
shortauthor = {Vlаdimir Аntonovich Zorich},
title = {Математический анализ},
url = {https://matan.math.msu.su/media/uploads/2020/03/V.A.Zorich-Kniga-I-10-izdanie-Corr.pdf},
volume = {1},
year = {2019}
}

@book{Зорич2019Том2,
author = {Владимир Антонович Зорич},
edition = {9},
language = {russian},
publisher = {МЦНМО},
shortauthor = {Vlаdimir Аntonovich Zorich},
title = {Математический анализ},
url = {https://matan.math.msu.su/media/uploads/2020/03/V.A.Zorich-Kniga-II-9-izdanie-Temp-Corr-3.pdf},
volume = {2},
year = {2019}
}

@booklet{ИвановТужилин2017,
author = {Александр Олегович Иванов and Алексей Августинович Тужилин},
language = {russian},
Expand All @@ -535,6 +620,18 @@ @booklet{ИвановТужилин2017
year = {2017}
}

@book{ИльинСадовничийСендов1985Том1,
author = {Владимир Александрович Ильин and Виктор Антонович Садовничий and Благовест Христов Сендов},
edition = {2},
language = {russian},
publisher = {Издательство Московского университета},
shortauthor = {Vlаdimir Аleksаndrovich Ilin and Viktor Аntonovich Sаdovnichiy and Blаgovest Khristov Sendov},
subtitle = {Начальный курс},
title = {Математический анализ},
volume = {1},
year = {1985}
}

@book{ИоффеТихомиров1974,
author = {Александр Давидович Иоффе and Владимир Михайлович Тихомиров},
language = {russian},
Expand Down Expand Up @@ -674,6 +771,17 @@ @book{ПетровЗяпков2010
year = {2010}
}

@book{Проданов1982,
author = {Иван Проданов},
language = {bulgarian},
publisher = {Наука и изкуство},
shortauthor = {Ivаn Prodаnov},
subtitle = {Построение на някои класически функционални пространства},
title = {Увод във функционалния анализ},
volume = {1},
year = {1982}
}

@book{Тагамлицки1971Диф,
author = {Ярослав Тагамлицки},
edition = {5},
Expand All @@ -685,6 +793,17 @@ @book{Тагамлицки1971Диф
year = {1971}
}

@book{Тагамлицки1978Инт,
author = {Ярослав Тагамлицки},
edition = {6},
language = {bulgarian},
publisher = {Наука и изкуство},
shortauthor = {Yaroslаv Tаgаmlitski},
title = {Интегрално смятане},
url = {https://store.fmi.uni-sofia.bg/fmi/or/_p2.pdf},
year = {1978}
}

@book{Тыртышников2007,
author = {Евгений Тыртышников},
isbn = {978-5-9221-0778-5},
Expand Down
12 changes: 12 additions & 0 deletions bibliography/papers.bib
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,18 @@ @article{Anderson1988
year = {1988}
}

@misc{AhoGareyUllman1972,
author = {Alfred V. Aho and Michael R. Garey and Jeffrey D. Ullman},
doi = {10.1137/0201008},
language = {english},
month = {6},
primaryclass = {General Mathematics},
publisher = {Society for Industrial & Applied Mathematics (SIAM)},
title = {The Transitive Reduction of a Directed Graph},
url = {http://dx.doi.org/10.1137/0201008},
year = {1972}
}

@article{BezhanishviliHolliday2019,
author = {Guram Bezhanishvili and Wesley H. Holliday},
doi = {10.1016/j.indag.2019.01.001},
Expand Down
2 changes: 1 addition & 1 deletion figures/ex__common_polynomial_divisors__incomparable.tex
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
\begin{tikzcd}[every arrow/.append style={dash}]
& & & X^6 & \\
& X^5 & & & \\
& & & & X^4 \ar[luu] \\
& & & & X^4 \ar[luu] \\
& & X^3 \ar[luu] \ar[ruuu] & & \\
& & X^2 \ar[luuu] \ar[rruu] \ar[ruuuu] & &
\end{tikzcd}
Expand Down
9 changes: 9 additions & 0 deletions figures/ex__def__partial_order_chain__binary_power_set.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
\documentclass{classes/tikzcd}

\begin{document}
\begin{tikzcd}[every arrow/.append style={dash}]
& \set{ a, b } & \\
a \ar[ur] & & b \ar[ul] \\
& \varnothing \ar[ul] \ar[ur] &
\end{tikzcd}
\end{document}
10 changes: 10 additions & 0 deletions figures/ex__def__partial_order_chain__ternary_power_set.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
\documentclass{classes/tikzcd}

\begin{document}
\begin{tikzcd}[every arrow/.append style={dash}]
& \set{ a, b, c } & \\
\set{ a, b } \ar[ur] & \set{ a, c } \ar[u] & \set{ b, c } \ar[ul] \\
\set{ a } \ar[u] \ar[ur] & \set{ b } \ar[ul] \ar[ur] & \set{ c } \ar[ul] \ar[u] \\
& \varnothing \ar[u] \ar[ul] \ar[ur] &
\end{tikzcd}
\end{document}
2 changes: 1 addition & 1 deletion text/affine_spaces.tex
Original file line number Diff line number Diff line change
Expand Up @@ -185,7 +185,7 @@ \subsection{Affine spaces}\label{subsec:affine_spaces}

This is an affine combination of members of \( S \). Therefore, \( A(A(S)) = A(S) \).

\SubProofOf[def:order_homomorphism/increasing]{monotonicity} If \( S_1 \subseteq S_2 \), then \( H(S_2) \) contains the affine combinations of the members of \( S_1 \) in addition to others. Hence, \( H(S_1) \subseteq H(S_2) \).
\SubProofOf[def:order_function/preserving]{monotonicity} If \( S_1 \subseteq S_2 \), then \( H(S_2) \) contains the affine combinations of the members of \( S_1 \) in addition to others. Hence, \( H(S_1) \subseteq H(S_2) \).
\end{defproof}

\begin{definition}\label{def:affine_subspace}\mcite[25]{Gallier2011}
Expand Down
2 changes: 1 addition & 1 deletion text/banach_space_interpolation.tex
Original file line number Diff line number Diff line change
Expand Up @@ -315,7 +315,7 @@ \subsection{Banach space interpolation}\label{subsec:banach_space_interpolation}
The \hyperref[def:k_functional]{\( K \)-functional} has the following basic properties:

\begin{thmenum}
\thmitem{def:k_functional_properties/basic} For any fixed \( x \in \Sigma \overline{X} \), the function \( t \mapsto K(t, x) \) is positive, \hyperref[def:order_homomorphism]{monotone} and \hyperref[def:convex_functions]{concave}.
\thmitem{def:k_functional_properties/basic} For any fixed \( x \in \Sigma \overline{X} \), the function \( t \mapsto K(t, x) \) is positive, \hyperref[def:order_function]{monotone} and \hyperref[def:convex_functions]{concave}.

\thmitem{def:k_functional_properties/inequality} For positive real numbers \( t, s > 0 \), we have the following inequality:
\begin{equation}\label{eq:def:k_functional_properties/inequality}
Expand Down
15 changes: 11 additions & 4 deletions text/boolean_algebras.tex
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
\subsection{Boolean algebras}\label{subsec:boolean_algebras}

\begin{definition}\label{def:heyting_algebra}\mcite[147]{Birkhoff1948}
A \term{Heyting algebra} or \term{relatively pseudo-complemented algebra} is a \hyperref[def:semilattice/bounded]{bounded} \hyperref[def:semilattice/distributive_lattice]{distributive lattice} \( L \) with a binary operation \( \rightarrow \) defined as
\begin{definition}\label{def:heyting_algebra}\mcite[8]{Johnstone1982}
A \term{Heyting algebra} is a \hyperref[def:semilattice/lattice]{lattice} \( L \) with a binary operation \( \rightarrow \) defined as
\begin{equation}\label{eq:def:heyting_algebra/conditional}
(x \rightarrow y) \coloneqq \bigvee\set{ a \in L \given a \wedge x \leq y }.
\end{equation}
Expand All @@ -23,9 +23,9 @@ \subsection{Boolean algebras}\label{subsec:boolean_algebras}

Heyting algebras have the following metamathematical properties:
\begin{thmenum}[resume=def:heyting_algebra]
\thmitem{def:heyting_algebra/theory} We extend the language of the \hyperref[def:semilattice/theory]{theory of lattices} with the binary infix functional symbol \( \rightarrow \) and the unary functional symbol \( \widetilde{\anon} \). By adding the axiom \eqref{eq:def:heyting_algebra/conditional} to the theory of bounded distributive lattices, we obtain the theory of Heyting algebras.
\thmitem{def:heyting_algebra/theory} We extend the language of the \hyperref[def:semilattice/theory]{theory of lattices} with the binary infix functional symbol \( \rightarrow \) and the unary functional symbol \( \widetilde{\anon} \). By adding the axiom \eqref{eq:def:heyting_algebra/conditional} to the theory of lattices, we obtain the theory of Heyting algebras.

\thmitem{def:heyting_algebra/submodel} The Heyting subalgebras are the \hyperref[def:semilattice/submodel]{bounded sublattices} for which the conditional is well-defined.
\thmitem{def:heyting_algebra/submodel} The Heyting subalgebras are the \hyperref[def:semilattice/submodel]{sublattices} for which the conditional is well-defined.

\thmitem{def:heyting_algebra/homomorphism} \hyperref[def:first_order_homomorphism]{First-order homomorphisms} between Heyting algebras are lattice homomorphisms with the additional requirement that homomorphisms preserve conditionals.

Expand All @@ -34,6 +34,13 @@ \subsection{Boolean algebras}\label{subsec:boolean_algebras}
\thmitem{def:heyting_algebra/opposite} The \hyperref[def:semilattice/duality]{principle of duality for lattices} does not hold for Heyting algebras.
\end{thmenum}
\end{definition}
\begin{comments}
\item Heyting algebras are called \enquote{Browerian} by \incite[147]{Birkhoff1967}, while \incite[7]{Golan2010} defines a Heyting algebra to be what we call a \hyperref[def:category_of_small_frames]{frame}.
\end{comments}

\begin{proposition}\label{thm:heyting_algebra_is_distributive}
A \hyperref[def:heyting_algebra]{Heyting algebra} is necessarily \hyperref[def:semilattice/distributive_lattice]{distributive}.
\end{proposition}

\begin{example}\label{ex:topological_space_is_heyting_algebra}
Somewhat similar to how the power set of a nonempty set is a Boolean algebra, as shown in \fullref{thm:boolean_algebra_of_subsets}, the topology \( \mscrT \) of a \hyperref[def:topological_space]{topological space} \( (X, \mscrT) \) is a Heyting algebra. This is actually used in topological semantics --- see \fullref{def:propositional_topological_semantics}.
Expand Down
2 changes: 1 addition & 1 deletion text/category_equivalences.tex
Original file line number Diff line number Diff line change
Expand Up @@ -479,7 +479,7 @@ \subsection{Category equivalences}\label{subsec:category_equivalences}
\end{aligned}
\end{equation*}

\ref{def:functor/CF1} is immediate and \ref{def:functor/CF2} follows from \eqref{eq:def:order_homomorphism/increasing}, hence \( F \) is indeed a functor.
\ref{def:functor/CF1} is immediate and \ref{def:functor/CF2} follows from \eqref{eq:def:order_function/preserving}, hence \( F \) is indeed a functor.

\SubProof{Proof that preorder categories induce preordered sets} Let \( \cat{P} \) be a small category. Define the binary relation
\begin{equation*}
Expand Down
10 changes: 5 additions & 5 deletions text/complete_ordered_sets.tex
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ \subsection{Complete ordered sets}\label{subsec:complete_ordered_set}

Therefore, \( A^U = A^{ULU} \) and \( A^{UL} = A^{ULUL} \).

\SubProofOf[def:order_homomorphism/increasing]{monotonicity} Fix subsets \( A \subseteq B \) of \( P \) and a member \( a' \) of \( A^{UL} \). We will show that \( a' \) is also a member of \( B^{UL} \).
\SubProofOf[def:order_function/preserving]{monotonicity} Fix subsets \( A \subseteq B \) of \( P \) and a member \( a' \) of \( A^{UL} \). We will show that \( a' \) is also a member of \( B^{UL} \).

First note that \( B^U \subseteq A^U \) because an upper limit of \( B \) is necessarily also an upper limit of \( A \).

Expand Down Expand Up @@ -112,7 +112,7 @@ \subsection{Complete ordered sets}\label{subsec:complete_ordered_set}
\end{equation*}
of \hyperref[def:dedekind_macnielle_closure]{Dedekind-MacNeille-closed sets} ordered via \hyperref[def:subset]{set inclusion}.

The set \( P \) itself can be embedded via the \hyperref[def:order_homomorphism/increasing]{order-preserving map} which sends each member of \( P \) to its \hyperref[def:order_interval/ray]{initial segment}, that is,
The set \( P \) itself can be embedded via the \hyperref[def:order_function/preserving]{order-preserving map} which sends each member of \( P \) to its \hyperref[def:order_interval/unbounded]{initial segment}, that is,
\begin{equation*}
\begin{aligned}
&\iota: P \to D(P), \\
Expand Down Expand Up @@ -261,7 +261,7 @@ \subsection{Complete ordered sets}\label{subsec:complete_ordered_set}
\begin{theorem}[Dedekind-MacNeille completion universal property]\label{thm:dedekind_macneille_completion_universal_property}\mcite[thm. 12]{Birkhoff1948}
The \hyperref[def:dedekind_macnielle_completion]{Dedekind-MacNeille completion} \( D(P) \) of a \hyperref[def:partially_ordered_set]{partially ordered set} \( P \) satisfies the following \hyperref[rem:universal_mapping_property]{universal mapping property}:
\begin{displayquote}
For every \hyperref[def:semilattice/lattice]{complete lattice} \( L \), every \hyperref[def:order_homomorphism/increasing]{order-preserving map} \( \varphi: P \to L \) \hyperref[def:factors_through]{uniquely factors through} \( D(P) \). More precisely, there exists a unique \hyperref[def:semilattice/homomorphism]{lattice homomorphism} \( \widetilde{\varphi}: D(P) \to L \) such that the following diagram commutes:
For every \hyperref[def:semilattice/lattice]{complete lattice} \( L \), every \hyperref[def:order_function/preserving]{order-preserving map} \( \varphi: P \to L \) \hyperref[def:factors_through]{uniquely factors through} \( D(P) \). More precisely, there exists a unique \hyperref[def:semilattice/homomorphism]{lattice homomorphism} \( \widetilde{\varphi}: D(P) \to L \) such that the following diagram commutes:
\begin{equation}\label{eq:thm:dedekind_macneille_completion_universal_property/diagram}
\begin{aligned}
\includegraphics[page=1]{output/thm__dedekind_macneille_completion_universal_property}
Expand Down Expand Up @@ -290,7 +290,7 @@ \subsection{Complete ordered sets}\label{subsec:complete_ordered_set}
\widetilde{\varphi}(P_{\leq x})
=
\bigvee\nolimits^L \set{ \varphi(a) \given a \in P_{\leq x} }
\reloset {\eqref{eq:def:order_homomorphism/increasing}} =
\reloset {\eqref{eq:def:order_function/preserving}} =
\varphi(x).
\end{equation*}

Expand Down Expand Up @@ -401,7 +401,7 @@ \subsection{Complete ordered sets}\label{subsec:complete_ordered_set}
\end{remark}

\begin{theorem}[Dedekind completion]\label{thm:def:dedekind_completion}
The \hyperref[def:dedekind_completion]{Dedekind completion} of an \hyperref[def:extremal_points/upper_and_lower_bounds]{unbounded} \hyperref[def:totally_ordered_set]{totally ordered set} is, up to an \hyperref[def:order_homomorphism/isomorphism]{order isomorphism}, the smallest such set that is \hyperref[def:dedekind_completeness]{Dedekind complete}.
The \hyperref[def:dedekind_completion]{Dedekind completion} of an \hyperref[def:extremal_points/upper_and_lower_bounds]{unbounded} \hyperref[def:totally_ordered_set]{totally ordered set} is, up to an \hyperref[def:order_function/isomorphism]{order isomorphism}, the smallest such set that is \hyperref[def:dedekind_completeness]{Dedekind complete}.
\end{theorem}
\begin{proof}
\SubProof{Proof of completeness} Let \( (\mscrA, \mscrB) \) be a \hyperref[def:dedekind_cut]{cut} in the Dedekind completion. We will show that \( \mscrA \) has a maximum or \( \mscrB \) has a minimum.
Expand Down
Loading

0 comments on commit c44356d

Please sign in to comment.