Skip to content

Commit

Permalink
Update docs markup (#1813) (#1897)
Browse files Browse the repository at this point in the history
  • Loading branch information
outoftardis authored Sep 17, 2021
1 parent 069cda5 commit 6d8ea7e
Show file tree
Hide file tree
Showing 170 changed files with 2,742 additions and 1,729 deletions.
2 changes: 1 addition & 1 deletion docs/source/_static/style.css
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
.wy-table-responsive table td {
/* !important prevents the common CSS stylesheets from overriding
this as on RTD they are loaded after this stylesheet */

white-space: normal !important;
}
}
Expand Down
2 changes: 1 addition & 1 deletion docs/source/api/algorithms/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ Refer to :ref:`Developer Guide <dg_algorithms>` for mathematical descriptions of
clustering/index.rst
covariance/index.rst
decomposition/index.rst
ensembles/index.rst
ensembles/index.rst
kernel-functions/index.rst
nearest-neighbors/index.rst
pairwise-distances/index.rst
Expand Down
68 changes: 34 additions & 34 deletions docs/source/bibliography.rst
Original file line number Diff line number Diff line change
Expand Up @@ -24,19 +24,19 @@ For more information about algorithms implemented in |short_name|, refer to the
.. [Adams2003]
Adams, Robert A., and John JF Fournier. Sobolev spaces. Vol. 140. Elsevier, 2003
.. [Agrawal94]
.. [Agrawal94]
Rakesh Agrawal, Ramakrishnan Srikant. *Fast Algorithms for Mining
Association Rules*. Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994.
.. [Arthur2007]
.. [Arthur2007]
Arthur, D., Vassilvitskii, S. *k-means++: The Advantages of
Careful Seeding*. Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms. Society for Industrial and
Applied Mathematics Philadelphia, PA, USA, 2007, pp. 1027-1035.
Available from http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf.
.. [Bahmani2012]
.. [Bahmani2012]
B. Bahmani, B. Moseley, A. Vattani, R. Kumar, S. Vassilvitskii.
*Scalable K-means++*. Proceedings of the VLDB Endowment, 2012.
Available from
Expand All @@ -56,39 +56,39 @@ For more information about algorithms implemented in |short_name|, refer to the
BACON: blocked adaptive computationally efficient outlier nominators.
Computational Statistics & Data Analysis, 34, 279-298, 2000.
.. [Bishop2006]
.. [Bishop2006]
Christopher M. Bishop. *Pattern Recognition and Machine Learning*,
p.198, Computational Statistics & Data Analysis, 34, 279-298,
2000. Springer Science+Business Media, LLC, ISBN-10:
0-387-31073-8, 2006.
.. [Boser92]
.. [Boser92]
B. E. Boser, I. Guyon, and V. Vapnik. *A training algorithm for
optimal marginclassifiers.*. Proceedings of the Fifth Annual
Workshop on Computational Learning Theory, pp: 144–152, ACM Press,
1992.
.. [Breiman2001]
.. [Breiman2001]
Leo Breiman. *Random Forests*. Machine Learning, Volume 45 Issue
1, pp. 5-32, 2001.
.. [Breiman84]
.. [Breiman84]
Leo Breiman, Jerome H. Friedman, Richard A. Olshen, Charles J.
Stone. *Classification and Regression Trees*. Chapman & Hall,
1984.
.. [Bro07]
.. [Bro07]
Bro, R.; Acar, E.; Kolda, T.. *Resolving the sign ambiguity in the
singular value decomposition*. SANDIA Report, SAND2007-6422,
Unlimited Release, October, 2007.
.. [Byrd2015]
.. [Byrd2015]
R. H. Byrd, S. L. Hansen, Jorge Nocedal, Y. Singer. *A Stochastic
Quasi-Newton Method for Large-Scale Optimization*, 2015.
arXiv:1401.7020v2 [math.OC]. Available from
http://arxiv.org/abs/1401.7020v2.
.. [Chen2016]
.. [Chen2016]
T. Chen, C. Guestrin. *XGBoost: A Scalable Tree Boosting System*,
KDD '16 Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.
Expand All @@ -102,7 +102,7 @@ For more information about algorithms implemented in |short_name|, refer to the
J. W. Demmel and W. Kahan. *Accurate singular values of
bidiagonal matrices*. SIAM J. Sci. Stat. Comput., 11 (1990), pp. 873-912.
.. [Dempster77]
.. [Dempster77]
A.P.Dempster, N.M. Laird, and D.B. Rubin. *Maximum-likelihood from
incomplete data via the em algorithm*. J. Royal Statist. Soc. Ser.
B., 39, 1977.
Expand All @@ -118,7 +118,7 @@ For more information about algorithms implemented in |short_name|, refer to the
In Proceedings of the 2nd ACM International Conference on Knowledge Discovery and Data Mining (KDD).
226-231, 1996.
.. [Fan05]
.. [Fan05]
Rong-En Fan, Pai-Hsuen Chen, Chih-Jen Lin. *Working Set Selection
Using Second Order Information for Training Support Vector
Machines.*. Journal of Machine Learning Research 6 (2005), pp:
Expand All @@ -129,12 +129,12 @@ For more information about algorithms implemented in |short_name|, refer to the
Algorithmic Aspects in Information and Management.
4th International conference, AAIM 2008, Shanghai, China, June 23-25, 2008. Proceedings, Springer.
.. [Freund99]
.. [Freund99]
Yoav Freund, Robert E. Schapire. *Additive Logistic regression: a
statistical view of boosting*. Journal of Japanese Society for
Artificial Intelligence (14(5)), 771-780, 1999.
.. [Friedman98]
.. [Friedman98]
Friedman, Jerome H., Trevor J. Hastie and Robert Tibshirani.
*Additive Logistic Regression: a Statistical View of Boosting.*.
1998.
Expand All @@ -144,12 +144,12 @@ For more information about algorithms implemented in |short_name|, refer to the
Additive Logistic regression: a statistical view of boosting.
The Annals of Statistics, 28(2), pp: 337-407, 2000.
.. [Friedman2010]
.. [Friedman2010]
Friedman, Jerome, Trevor Hastie, and Rob Tibshirani.
*Regularization paths for generalized linear models via coordinate
descent.*. Journal of statistical software 33.1 (2010): 1.
.. [Friedman2017]
.. [Friedman2017]
Jerome Friedman, Trevor Hastie, Robert Tibshirani. 2017. *The
Elements of Statistical Learning Data Mining, Inference, and
Prediction.* Springer.
Expand All @@ -161,18 +161,18 @@ For more information about algorithms implemented in |short_name|, refer to the
.. [Gross2014]
J. Gross, J. Yellen, P. Zhang, Handbook of Graph Theory, Second Edition, 2014.
.. [Hastie2009]
.. [Hastie2009]
Trevor Hastie, Robert Tibshirani, Jerome Friedman. *The Elements
of Statistical Learning: Data Mining, Inference, and Prediction*.
Second Edition (Springer Series in Statistics), Springer, 2009.
Corr. 7th printing 2013 edition (December 23, 2011).
.. [Hoerl70]
.. [Hoerl70]
Arthur E. Hoerl and Robert W. Kennard. *Ridge Regression: Biased
Estimation for Nonorthogonal Problems*. Technometrics, Vol. 12,
No. 1 (Feb., 1970), pp. 55-67.
.. [Hsu02]
.. [Hsu02]
Chih-Wei Hsu and Chih-Jen Lin. *A Comparison of Methods for
Multiclass Support Vector Machines*. IEEE Transactions on Neural
Networks, Vol. 13, No. 2, pp: 415-425, 2002.
Expand All @@ -182,13 +182,13 @@ For more information about algorithms implemented in |short_name|, refer to the
Collaborative Filtering for Implicit Feedback Datasets.
ICDM'08. Eighth IEEE International Conference, 2008.
.. [James2013]
.. [James2013]
Gareth James, Daniela Witten, Trevor Hastie, and Rob Tibshirani.
*An Introduction to Statistical Learning with Applications in R*.
Springer Series in Statistics, Springer, 2013 (Corrected at
6\ :sup:`th` printing 2015).
.. [Joachims99]
.. [Joachims99]
Thorsten Joachims. *Making Large-Scale SVM Learning Practical*.
Advances in Kernel Methods - Support Vector Learning, B.
Schölkopf, C. Burges, and A. Smola (ed.), pp: 169 – 184, MIT Press
Expand All @@ -198,12 +198,12 @@ For more information about algorithms implemented in |short_name|, refer to the
S. Lang. *Linear Algebra*. Springer-Verlag New York, 1987.
.. [Li2015]
Li, Shengren, and Nina Amenta.
Li, Shengren, and Nina Amenta.
"Brute-force k-nearest neighbors search on the GPU."
In International Conference on Similarity Search and Applications, pp. 259-270.
Springer, Cham, 2015.
.. [Lloyd82]
.. [Lloyd82]
Stuart P Lloyd. *Least squares quantization in PCM*. IEEE
Transactions on Information Theory 1982, 28 (2): 1982pp: 129–137.
Expand All @@ -219,10 +219,10 @@ For more information about algorithms implemented in |short_name|, refer to the
1998, Ed. Niederreiter, H. and Spanier, J., Springer 2000, pp. 56-69,
available from http://www.math.sci.hiroshima-u.ac.jp/%7Em-mat/MT/DC/dc.html.
.. [Mitchell97]
.. [Mitchell97]
Tom M. Mitchell. *Machine Learning*. McGraw-Hill Education, 1997.
.. [Mu2014]
.. [Mu2014]
Mu Li, Tong Zhang, Yuqiang Chen, Alexander J. Smola. *Efficient
Mini-batch Training for Stochastic Optimization*, 2014. Available
from https://www.cs.cmu.edu/~muli/file/minibatch_sgd.pdf.
Expand All @@ -232,7 +232,7 @@ For more information about algorithms implemented in |short_name|, refer to the
Version:2.1 Document Revision:24
Available from `opencl-2.1.pdf <https://www.khronos.org/registry/OpenCL/specs/opencl-2.1.pdf>`_
.. [Patwary2016]
.. [Patwary2016]
Md. Mostofa Ali Patwary, Nadathur Rajagopalan Satish, Narayanan
Sundaram, Jialin Liu, Peter Sadowski, Evan Racah, Suren Byna,
Craig Tull, Wahid Bhimji, Prabhat, Pradeep Dubey. *PANDA: Extreme
Expand All @@ -248,21 +248,21 @@ For more information about algorithms implemented in |short_name|, refer to the
A fast algorithm for training support vector machines." (1998).
Available from https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-98-14.pdf.
.. [Quinlan86]
.. [Quinlan86]
J. R. Quinlan. *Induction of Decision Trees*. Machine Learning,
Volume 1 Issue 1, pp. 81-106, 1986.
.. [Quinlan87]
.. [Quinlan87]
J. R. Quinlan. *Simplifying decision trees*. International journal
of Man-Machine Studies, Volume 27 Issue 3, pp. 221-234, 1987.
.. [Renie03]
.. [Renie03]
Jason D.M. Rennie, Lawrence, Shih, Jaime Teevan, David R. Karget.
*Tackling the Poor Assumptions of Naïve Bayes Text classifiers*.
Proceedings of the Twentieth International Conference on Machine
Learning (ICML-2003), Washington DC, 2003.
.. [Rumelhart86]
.. [Rumelhart86]
David E. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams.
*Learning representations by back-propagating errors*. Nature
(323), pp. 533-536, 1986.
Expand All @@ -277,7 +277,7 @@ For more information about algorithms implemented in |short_name|, refer to the
integrates OpenCL™ devices with modern C++, Version 1.2.1 Available from
`sycl-1.2.1.pdf <https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf>`_
.. [Tan2005]
.. [Tan2005]
Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to
Data Mining, (First Edition) Addison-Wesley Longman Publishing
Co., Inc. Boston, MA, USA, 2005, ISBN: 032132136.
Expand All @@ -291,13 +291,13 @@ For more information about algorithms implemented in |short_name|, refer to the
.. [Wen2018]
Wen, Zeyi, Jiashuai Shi, Qinbin Li, Bingsheng He, and Jian Chen.
ThunderSVM: A fast SVM library on GPUs and CPUs.
The Journal of Machine Learning Research, 19, 1-5 (2018).
The Journal of Machine Learning Research, 19, 1-5 (2018).
.. [Wu04]
.. [Wu04]
Ting-Fan Wu, Chih-Jen Lin, Ruby C. Weng. *Probability Estimates
for Multi-class Classification by Pairwise Coupling*. Journal of
Machine Learning Research 5, pp: 975-1005, 2004.
.. [Zhu2005]
.. [Zhu2005]
Zhu, Ji, Hui Zou, Saharon Rosset and Trevor J. Hastie.
*Multi-class AdaBoost*. 2005
34 changes: 21 additions & 13 deletions docs/source/daal/algorithms/association_rules/association-rules.rst
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,9 @@ The association rules algorithm accepts the input described below.
Pass the ``Input ID`` as a parameter to the methods that provide input
for your algorithm.

.. list-table::
.. tabularcolumns:: |\Y{0.2}|\Y{0.8}|

.. list-table:: Algorithm Input for Association Rules (Batch Processing)
:widths: 10 60
:header-rows: 1
:align: left
Expand All @@ -93,10 +95,13 @@ Algorithm Parameters

The association rules algorithm has the following parameters:

.. list-table::
.. tabularcolumns:: |\Y{0.15}|\Y{0.15}|\Y{0.7}|

.. list-table:: Algorithm Parameters for Association Rules (Batch Processing)
:widths: 10 10 60
:header-rows: 1
:align: left
:class: longtable

* - Parameter
- Default Value
Expand Down Expand Up @@ -151,10 +156,13 @@ The association rules algorithm calculates the result described
below. Pass the ``Result ID`` as a parameter to the methods that access
the results of your algorithm.

.. list-table::
.. tabularcolumns:: |\Y{0.2}|\Y{0.8}|

.. list-table:: Algorithm Output for Association Rules (Batch Processing)
:widths: 10 60
:header-rows: 1
:align: left
:class: longtable

* - Result ID
- Result
Expand All @@ -163,28 +171,28 @@ the results of your algorithm.
the table equals the number of items in the large item sets. Each row
contains two integers:

+ ID of the large item set, the number between 0 and nLargeItemsets -1.
+ ID of the item, the number between 0 and :math:`nUniqueItems-1`.
+ ID of the large item set, the number between 0 and nLargeItemsets -1.
+ ID of the item, the number between 0 and :math:`nUniqueItems-1`.

* - ``largeItemsetsSupport``
- Pointer to the :math:`nLargeItemsets \times 2` numeric table of support values. Each row contains two integers:

+ ID of the large item set, the number between 0 and nLargeItemsets-1.
+ The support value, the number of times the item set is met in the array of transactions.
+ ID of the large item set, the number between 0 and nLargeItemsets-1.
+ The support value, the number of times the item set is met in the array of transactions.

* - ``antecedentItemsets``
- Pointer to the :math:`nAntecedentItems \times 2` numeric table that contains the
left-hand-side (X) part of the association rules. Each row contains two integers:

+ Rule ID, the number between 0 and :math:`nAntecedentItems-1`.
+ Item ID, the number between 0 and :math:`nUniqueItems-1`.
+ Rule ID, the number between 0 and :math:`nAntecedentItems-1`.
+ Item ID, the number between 0 and :math:`nUniqueItems-1`.

* - ``conseqentItemsets``
- Pointer to the :math:`nConsequentItems \times 2` numeric table that contains the
right-hand-side (Y) part of the association rules. Each row contains two integers:

+ Rule ID, the number between 0 and :math:`nConsequentItems-1`.
+ Item ID, the number between 0 and :math:`nUniqueItems-1`.
+ Rule ID, the number between 0 and :math:`nConsequentItems-1`.
+ Item ID, the number between 0 and :math:`nUniqueItems-1`.

* - ``confidence``
- Pointer to the :math:`nRules \times 1` numeric table that contains confidence values
Expand Down Expand Up @@ -224,7 +232,7 @@ Examples
- :cpp_example:`assoc_rules_apriori_batch.cpp <association_rules/assoc_rules_apriori_batch.cpp>`

.. tab:: Java*

.. note:: There is no support for Java on GPU.

Batch Processing:
Expand All @@ -234,7 +242,7 @@ Examples
.. tab:: Python*

Batch Processing:

- :daal4py_example:`association_rules_batch.py`

Performance Considerations
Expand Down
Loading

0 comments on commit 6d8ea7e

Please sign in to comment.