-
-
Notifications
You must be signed in to change notification settings - Fork 16.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
AWS Neuron model outputs differs from Yolov5 - AWS Inferentia #7739
Comments
👋 Hello @josebenitezg, thank you for your interest in YOLOv5 🚀! Please visit our ⭐️ Tutorials to get started, where you can find quickstart guides for simple tasks like Custom Data Training all the way to advanced concepts like Hyperparameter Evolution. If this is a 🐛 Bug Report, please provide screenshots and minimum viable code to reproduce your issue, otherwise we can not help you. If this is a custom training ❓ Question, please provide as much information as possible, including dataset images, training logs, screenshots, and a public link to online W&B logging if available. For business inquiries or professional support requests please visit https://ultralytics.com or email support@ultralytics.com. RequirementsPython>=3.7.0 with all requirements.txt installed including PyTorch>=1.7. To get started: git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install EnvironmentsYOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled):
StatusIf this badge is green, all YOLOv5 GitHub Actions Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training (train.py), validation (val.py), inference (detect.py) and export (export.py) on macOS, Windows, and Ubuntu every 24 hours and on every commit. |
@ooolox 👋 Hello! Thanks for asking about handling inference results. YOLOv5 🚀 PyTorch Hub models allow for simple model loading and inference in a pure python environment without using Simple Inference ExampleThis example loads a pretrained YOLOv5s model from PyTorch Hub as import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5l, yolov5x, etc.
# model = torch.hub.load('ultralytics/yolov5', 'custom', 'path/to/best.pt') # custom trained model
# Images
im = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, URL, PIL, OpenCV, numpy, list
# Inference
results = model(im)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
results.xyxy[0] # im predictions (tensor)
results.pandas().xyxy[0] # im predictions (pandas)
# xmin ymin xmax ymax confidence class name
# 0 749.50 43.50 1148.0 704.5 0.874023 0 person
# 2 114.75 195.75 1095.0 708.0 0.624512 0 person
# 3 986.00 304.00 1028.0 420.0 0.286865 27 tie See YOLOv5 PyTorch Hub Tutorial for details. Good luck 🍀 and let us know if you have any other questions! |
Hi @glenn-jocher, thanks for your response. The custom Neuron Yolov5 inference script we used gives us results like this which is not similar to the results from the yolov5 model can you take a look at it? |
Hi aws-zejdaj, could you check this out. |
hi @jluntamazon did you know what else could be? |
The torch hub version of yolov5 does not directly expose the import torch
import torch_neuron
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
# Configure to use inplace flag for Neuron
for m in model.modules():
if hasattr(m, 'inplace'):
m.inplace = False
# Trace with Neuron
example = torch.zeros((1, 3, 384, 640), dtype=torch.float)
model.model(example) # Execute once to avoid trace errors
trace = torch_neuron.trace(model.model, (example,)) |
👋 Hello, this issue has been automatically marked as stale because it has not had recent activity. Please note it will be closed if no further activity occurs. Access additional YOLOv5 🚀 resources:
Access additional Ultralytics ⚡ resources:
Feel free to inform us of any other issues you discover or feature requests that come to mind in the future. Pull Requests (PRs) are also always welcomed! Thank you for your contributions to YOLOv5 🚀 and Vision AI ⭐! |
@josebenitezg your problem is here:
Remove this line and it will work. |
Search before asking
YOLOv5 Component
No response
Question
Hi!
I was able to convert the model from yolov5 to neuron with the follow code:
Now that I am trying to test and compare I have the tensors outputs different from yolo as follow:
Neuron Yolov5 Model:
Yolov5:
Inference script:
Is there something wrong when converting the model or running inference? The label and also the acc seems to be same as the expected, but tensors not.
I follow @jluntamazon pull but I not able to see difference. #2953
Environment
Minimal Reproducible Example
No response
Additional
No response
Are you willing to submit a PR?
The text was updated successfully, but these errors were encountered: