forked from Lightning-AI/pytorch-lightning
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add parity test for simple RNN (Lightning-AI#1351)
* Add parity test for simple RNN * Update test_rnn_parity.py Co-authored-by: William Falcon <waf2107@columbia.edu>
- Loading branch information
Showing
1 changed file
with
155 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,155 @@ | ||
import time | ||
|
||
import numpy as np | ||
import pytest | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from torch.utils.data import Dataset, DataLoader | ||
|
||
from pytorch_lightning import Trainer, LightningModule | ||
|
||
|
||
class AverageDataset(Dataset): | ||
def __init__(self, dataset_len=300, sequence_len=100): | ||
self.dataset_len = dataset_len | ||
self.sequence_len = sequence_len | ||
self.input_seq = torch.randn(dataset_len, sequence_len, 10) | ||
top, bottom = self.input_seq.chunk(2, -1) | ||
self.output_seq = top + bottom.roll(shifts=1, dims=-1) | ||
|
||
def __len__(self): | ||
return self.dataset_len | ||
|
||
def __getitem__(self, item): | ||
return self.input_seq[item], self.output_seq[item] | ||
|
||
|
||
class ParityRNN(LightningModule): | ||
def __init__(self): | ||
super(ParityRNN, self).__init__() | ||
self.rnn = nn.LSTM(10, 20, batch_first=True) | ||
self.linear_out = nn.Linear(in_features=20, out_features=5) | ||
|
||
def forward(self, x): | ||
seq, last = self.rnn(x) | ||
return self.linear_out(seq) | ||
|
||
def training_step(self, batch, batch_nb): | ||
x, y = batch | ||
y_hat = self(x) | ||
loss = F.mse_loss(y_hat, y) | ||
return {'loss': loss} | ||
|
||
def configure_optimizers(self): | ||
return torch.optim.Adam(self.parameters(), lr=0.02) | ||
|
||
def train_dataloader(self): | ||
return DataLoader(AverageDataset(), batch_size=30) | ||
|
||
|
||
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine") | ||
def test_pytorch_parity(tmpdir): | ||
""" | ||
Verify that the same pytorch and lightning models achieve the same results | ||
:param tmpdir: | ||
:return: | ||
""" | ||
num_epochs = 2 | ||
num_rums = 3 | ||
|
||
lightning_outs, pl_times = lightning_loop(ParityRNN, num_rums, num_epochs) | ||
manual_outs, pt_times = vanilla_loop(ParityRNN, num_rums, num_epochs) | ||
# make sure the losses match exactly to 5 decimal places | ||
for pl_out, pt_out in zip(lightning_outs, manual_outs): | ||
np.testing.assert_almost_equal(pl_out, pt_out, 8) | ||
|
||
|
||
def set_seed(seed): | ||
np.random.seed(seed) | ||
torch.manual_seed(seed) | ||
if torch.cuda.is_available(): | ||
torch.cuda.manual_seed(seed) | ||
|
||
|
||
def vanilla_loop(MODEL, num_runs=10, num_epochs=10): | ||
""" | ||
Returns an array with the last loss from each epoch for each run | ||
""" | ||
device = torch.device('cuda' if torch.cuda.is_available() else "cpu") | ||
errors = [] | ||
times = [] | ||
|
||
for i in range(num_runs): | ||
time_start = time.perf_counter() | ||
|
||
# set seed | ||
seed = i | ||
set_seed(seed) | ||
|
||
# init model parts | ||
model = MODEL() | ||
dl = model.train_dataloader() | ||
optimizer = model.configure_optimizers() | ||
|
||
# model to GPU | ||
model = model.to(device) | ||
|
||
epoch_losses = [] | ||
for epoch in range(num_epochs): | ||
|
||
# run through full training set | ||
for j, batch in enumerate(dl): | ||
x, y = batch | ||
x = x.cuda(0) | ||
y = y.cuda(0) | ||
batch = (x, y) | ||
|
||
loss_dict = model.training_step(batch, j) | ||
loss = loss_dict['loss'] | ||
loss.backward() | ||
optimizer.step() | ||
optimizer.zero_grad() | ||
|
||
# track last epoch loss | ||
epoch_losses.append(loss.item()) | ||
|
||
time_end = time.perf_counter() | ||
times.append(time_end - time_start) | ||
|
||
errors.append(epoch_losses[-1]) | ||
|
||
return errors, times | ||
|
||
|
||
def lightning_loop(MODEL, num_runs=10, num_epochs=10): | ||
errors = [] | ||
times = [] | ||
|
||
for i in range(num_runs): | ||
time_start = time.perf_counter() | ||
|
||
# set seed | ||
seed = i | ||
set_seed(seed) | ||
|
||
# init model parts | ||
model = MODEL() | ||
trainer = Trainer( | ||
max_epochs=num_epochs, | ||
show_progress_bar=False, | ||
weights_summary=None, | ||
gpus=1, | ||
early_stop_callback=False, | ||
checkpoint_callback=False, | ||
distributed_backend='dp', | ||
) | ||
trainer.fit(model) | ||
|
||
final_loss = trainer.running_loss.last().item() | ||
errors.append(final_loss) | ||
|
||
time_end = time.perf_counter() | ||
times.append(time_end - time_start) | ||
|
||
return errors, times |