Skip to content

trajanov/XAI-and-CI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 

Repository files navigation

Explainable AI and Causal Inference

Explainable AI and Causal Inference are some of the most vibrant areas in Machine Learning in recent years. This page explores the opportunities of combining those two areas.

Explainable AI (XAI) is artificial intelligence (AI) in which the results of the ML model can be interpreted by humans.

Causal inference is the process of determining the actual effect of a particular phenomenon (feature) that is a component of a complex system.

Explainable AI

Diverse Counterfactual Explanations (DiCE) for ML

link: https://github.com/interpretml/DiCE

DiCE implements counterfactual (CF) explanations that provide this information by showing feature-perturbed versions of the same person who received the loan, e.g., you would have received the loan if your income was higher by $10,000. In other words, it provides "what-if" explanations for model output and can be a valuable complement to other explanation methods, both for end-users and model developers.

Causal Inference

Books

Tutorials

KDD 2021 Tutorial: Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber https://github.com/causal-machine-learning/kdd2021-tutorial

About

Explainable AI and Causal Inference

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published