Implementation of the stacked denoising autoencoder in Tensorflow
-
Updated
Aug 21, 2018 - Python
Implementation of the stacked denoising autoencoder in Tensorflow
Pytorch implementations of various types of autoencoders
SANSA - sparse EASE for millions of items
Evaluate interpretability methods on localizing and disentangling concepts in LLMs.
Tensorflow Examples
Multi-Layer Sparse Autoencoders (ICLR 2025)
Sparse Autoencoders (SAE) vs CLIP fine-tuning fun.
Repository of Deep Propensity Network - Sparse Autoencoder(DPN-SA) to calculate propensity score using sparse autoencoder
Providing the answer to "How to do patching on all available SAEs on GPT-2?". It is an official repository of the implementation of the paper "Evaluating Open-Source Sparse Autoencoders on Disentangling Factual Knowledge in GPT-2 Small"
Collection of autoencoder models in Tensorflow
Implemented semi-supervised learning for digit recognition using Sparse Autoencoder
Interpret and control dense embedding via sparse autoencoder.
Add a description, image, and links to the sparse-autoencoder topic page so that developers can more easily learn about it.
To associate your repository with the sparse-autoencoder topic, visit your repo's landing page and select "manage topics."