-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #65 from tmu-nlp/okabe
Okabe
- Loading branch information
Showing
12 changed files
with
216,755 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"## 形態素解析結果(neko.txt.mecab)を読み込むプログラムを実装せよ.\n", | ||
"## ただし,各形態素は表層形(surface),基本形(base),品詞(pos),品詞細分類1(pos1)をキーとするマッピング型に格納し,\n", | ||
"## 1文を形態素(マッピング型)のリストとして表現せよ.\n", | ||
"## 第4章の残りの問題では,ここで作ったプログラムを活用せよ.\n", | ||
"\n", | ||
"import re\n", | ||
"import numpy as np\n", | ||
"\n", | ||
"with open('neko2.txt.mecab','r') as f:\n", | ||
" neko_data = f.read()\n", | ||
"split_neko = neko_data.split(\"\\n\")\n", | ||
"\n", | ||
"sentence_list = list()\n", | ||
"dict_line = dict()\n", | ||
"sentence = list()\n", | ||
"\n", | ||
"for line in split_neko:\n", | ||
" split_line = re.split('[\\t,]',line)\n", | ||
" #print(split_line)\n", | ||
" if len(split_line) == 1 and split_line[0] == \"\":\n", | ||
" continue\n", | ||
" if len(split_line) == 1 and split_line[0] == \"EOS\":\n", | ||
" sentence_list.append(sentence)\n", | ||
" sentence = list()\n", | ||
" continue\n", | ||
" #print(split_line[0],split_line[7],split_line[1],split_line[2])\n", | ||
" dict_line[\"surface\"] = split_line[0]\n", | ||
" dict_line[\"base\"] = split_line[7]\n", | ||
" dict_line[\"pos\"] = split_line[1]\n", | ||
" dict_line[\"pos1\"] = split_line[2]\n", | ||
" sentence.append(dict_line)\n", | ||
" dict_line = dict()\n", | ||
"\n", | ||
"#for line in sentence_list:\n", | ||
" #print(line)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"language_info": { | ||
"name": "python" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
import re | ||
import numpy as np | ||
|
||
with open('neko2.txt.mecab','r') as f: | ||
neko_data = f.read() | ||
split_neko = neko_data.split("\n") | ||
|
||
sentence_list = list() | ||
dict_line = dict() | ||
sentence = list() | ||
|
||
for line in split_neko: | ||
split_line = re.split('[\t,]',line) | ||
#print(split_line) | ||
if len(split_line) == 1 and split_line[0] == "": | ||
continue | ||
if len(split_line) == 1 and split_line[0] == "EOS": | ||
sentence_list.append(sentence) | ||
sentence = list() | ||
continue | ||
#print(split_line[0],split_line[7],split_line[1],split_line[2]) | ||
dict_line["surface"] = split_line[0] | ||
dict_line["base"] = split_line[7] | ||
dict_line["pos"] = split_line[1] | ||
dict_line["pos1"] = split_line[2] | ||
sentence.append(dict_line) | ||
dict_line = dict() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,29 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#動詞の表層形をすべて抽出せよ.\n", | ||
"import knock30\n", | ||
"\n", | ||
"verbs = list()\n", | ||
"\n", | ||
"for line in knock30.sentence_list:\n", | ||
" for morph in line:\n", | ||
" if morph['pos'] == \"動詞\":\n", | ||
" verbs.append(morph['surface'])\n", | ||
"print(verbs)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"language_info": { | ||
"name": "python" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#動詞の基本形をすべて抽出せよ\n", | ||
"\n", | ||
"import knock30\n", | ||
"\n", | ||
"verbs_base = list()\n", | ||
"\n", | ||
"for line in knock30.sentence_list:\n", | ||
" for morph in line:\n", | ||
" if morph['pos'] == \"動詞\":\n", | ||
" verbs_base.append(morph['base'])\n", | ||
"print(verbs_base)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"language_info": { | ||
"name": "python" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#2つの名詞が「の」で連結されている名詞句を抽出せよ\n", | ||
"\n", | ||
"import knock30\n", | ||
"\n", | ||
"nouns = list()\n", | ||
"\n", | ||
"for line in knock30.sentence_list:\n", | ||
" for i in range(len(line)):\n", | ||
" if line[i]['base'] == \"の\" and line[i]['pos'] == \"助詞\":\n", | ||
" #print(line)\n", | ||
" if i<len(line)-1:\n", | ||
" if line[i-1]['pos'] == \"名詞\" and line[i+1]['pos'] == \"名詞\":\n", | ||
" nouns.append(str(line[i-1]['surface']+\"の\"+line[i+1]['surface']))\n", | ||
"\n", | ||
"print(nouns)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"language_info": { | ||
"name": "python" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#名詞の連接(連続して出現する名詞)を最長一致で抽出せよ\n", | ||
"\n", | ||
"import knock30\n", | ||
"\n", | ||
"ct_noun = list()\n", | ||
"\n", | ||
"for line in knock30.sentence_list:\n", | ||
" temp_noun = \"\"\n", | ||
" cnt = 0\n", | ||
" for morph in line:\n", | ||
" if morph[\"pos\"] == \"名詞\":\n", | ||
" temp_noun += morph[\"surface\"]\n", | ||
" cnt += 1\n", | ||
" else:\n", | ||
" if cnt > 1:\n", | ||
" ct_noun.append(temp_noun)\n", | ||
" temp_noun = \"\"\n", | ||
" cnt = 0 \n", | ||
"\n", | ||
"length = 0\n", | ||
"longest = list()\n", | ||
"for elm in ct_noun:\n", | ||
" if len(elm) > length:\n", | ||
" longest.append(elm)\n", | ||
" length = len(elm)\n", | ||
"\n", | ||
"print(longest)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"language_info": { | ||
"name": "python" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#文章中に出現する単語とその出現頻度を求め,出現頻度の高い順に並べよ\n", | ||
"import knock30\n", | ||
"\n", | ||
"word_dict = dict()\n", | ||
"\n", | ||
"for line in knock30.sentence_list:\n", | ||
" for morph in line:\n", | ||
" if morph[\"pos\"] == \"記号\":\n", | ||
" continue\n", | ||
" base = str(morph[\"base\"])\n", | ||
" if base in word_dict:\n", | ||
" word_dict[base] += 1\n", | ||
" else:\n", | ||
" word_dict[base] = 1\n", | ||
"\n", | ||
"sort_word_list = sorted(word_dict.items(), key=lambda x: x[1], reverse=True)\n", | ||
"\n", | ||
"print(sort_word_list)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"language_info": { | ||
"name": "python" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#出現頻度が高い10語とその出現頻度をグラフ(例えば棒グラフなど)で表示せよ.\n", | ||
"import knock30\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"import japanize_matplotlib #日本語化matplotlib\n", | ||
"import seaborn as sns\n", | ||
"sns.set(font=\"IPAexGothic\")\n", | ||
"\n", | ||
"word_dict = dict()\n", | ||
"\n", | ||
"for line in knock30.sentence_list:\n", | ||
" for morph in line:\n", | ||
" if morph[\"pos\"] == \"記号\":\n", | ||
" continue\n", | ||
" base = str(morph[\"base\"])\n", | ||
" if base in word_dict:\n", | ||
" word_dict[base] += 1\n", | ||
" else:\n", | ||
" word_dict[base] = 1\n", | ||
"\n", | ||
"sort_word_list = sorted(word_dict.items(), key=lambda x: x[1], reverse=True)\n", | ||
"\n", | ||
"top_10 = sort_word_list[:10]\n", | ||
"\n", | ||
"words, frequencies = zip(*top_10)\n", | ||
"\n", | ||
"plt.bar(words, frequencies)\n", | ||
"plt.xlabel('語')\n", | ||
"plt.ylabel('頻度')\n", | ||
"plt.title('出現頻度上位10単語')\n", | ||
"plt.show()" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"language_info": { | ||
"name": "python" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,45 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#「猫」とよく共起する(共起頻度が高い)10語とその出現頻度をグラフ(例えば棒グラフなど)で表示せよ.\n", | ||
"import knock30\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"import japanize_matplotlib #日本語化matplotlib\n", | ||
"import seaborn as sns\n", | ||
"from collections import defaultdict\n", | ||
"sns.set(font=\"IPAexGothic\")\n", | ||
"\n", | ||
"word_dict = defaultdict(int)\n", | ||
"\n", | ||
"for line in knock30.sentence_list:\n", | ||
" if any(morph[\"base\"] == \"猫\" for morph in line):\n", | ||
" for morph in line:\n", | ||
" if morph[\"base\"] != \"猫\" and morph[\"pos\"] != \"記号\":\n", | ||
" word_dict[morph[\"base\"]] += 1\n", | ||
"\n", | ||
"sort_word_list = sorted(word_dict.items(), key=lambda x: x[1], reverse=True)\n", | ||
"top_10 = sort_word_list[:10]\n", | ||
"\n", | ||
"words, frequencies = zip(*top_10)\n", | ||
"\n", | ||
"plt.bar(words, frequencies)\n", | ||
"plt.xlabel('語')\n", | ||
"plt.ylabel('頻度')\n", | ||
"plt.title('「猫」との共起頻度が高い10単語')\n", | ||
"plt.show()" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"language_info": { | ||
"name": "python" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Oops, something went wrong.