Skip to content

Commit

Permalink
fix: normalize pair distances only if max_rul is set (#47)
Browse files Browse the repository at this point in the history
* fix: normalize distances only if max_rul is set

* fix: linting issues
  • Loading branch information
tilman151 authored Dec 8, 2023
1 parent 9f49f7e commit 4e4bd6b
Showing 1 changed file with 14 additions and 12 deletions.
26 changes: 14 additions & 12 deletions rul_datasets/core.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
"""Basic data modules for experiments involving only a single subset of any RUL
dataset. """

from typing import Dict, List, Optional, Tuple, Any, Callable
from typing import Dict, List, Optional, Tuple, Any, Callable, cast, Union

import numpy as np
import pytorch_lightning as pl
Expand Down Expand Up @@ -411,17 +411,17 @@ def __init__(
elif mode == "labeled":
self._get_pair_func = self._get_labeled_pair_idx

def _get_max_rul(self):
def _get_max_rul(self) -> Optional[int]:
max_ruls = [dm.reader.max_rul for dm in self.dms]
if all(m is None for m in max_ruls):
max_rul = 1e10
max_rul = None
elif any(m is None for m in max_ruls):
raise ValueError(
"PairedRulDataset needs a set max_rul for all or none of the readers "
"but at least one and not all of them has None."
)
else:
max_rul = max(max_ruls)
max_rul = max(cast(List[int], max_ruls))

return max_rul

Expand Down Expand Up @@ -470,7 +470,7 @@ def __next__(self) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tens
else:
raise StopIteration

def _get_pair_idx(self) -> Tuple[int, int, int, int, int]:
def _get_pair_idx(self) -> Tuple[int, int, int, Union[int, float], int]:
chosen_run_idx = self._rng.integers(0, len(self._features))
domain_label = self._run_domain_idx[chosen_run_idx]
chosen_run = self._features[chosen_run_idx]
Expand All @@ -480,7 +480,7 @@ def _get_pair_idx(self) -> Tuple[int, int, int, int, int]:
low=0,
high=run_length - self.min_distance,
)
end_idx = min(run_length, anchor_idx + self._max_rul)
end_idx = min(run_length, anchor_idx + (self._max_rul or 999999))
query_idx = self._rng.integers(
low=anchor_idx + self.min_distance,
high=end_idx,
Expand All @@ -489,7 +489,7 @@ def _get_pair_idx(self) -> Tuple[int, int, int, int, int]:

return chosen_run_idx, anchor_idx, query_idx, distance, domain_label

def _get_pair_idx_piecewise(self) -> Tuple[int, int, int, int, int]:
def _get_pair_idx_piecewise(self) -> Tuple[int, int, int, Union[int, float], int]:
chosen_run_idx = self._rng.integers(0, len(self._features))
domain_label = self._run_domain_idx[chosen_run_idx]
chosen_run = self._features[chosen_run_idx]
Expand All @@ -511,7 +511,7 @@ def _get_pair_idx_piecewise(self) -> Tuple[int, int, int, int, int]:

return chosen_run_idx, anchor_idx, query_idx, distance, domain_label

def _get_labeled_pair_idx(self) -> Tuple[int, int, int, int, int]:
def _get_labeled_pair_idx(self) -> Tuple[int, int, int, Union[int, float], int]:
chosen_run_idx = self._rng.integers(0, len(self._features))
domain_label = self._run_domain_idx[chosen_run_idx]
chosen_run = self._features[chosen_run_idx]
Expand All @@ -527,7 +527,7 @@ def _get_labeled_pair_idx(self) -> Tuple[int, int, int, int, int]:
high=run_length,
)
# RUL label difference is negative time step difference
distance = int(chosen_labels[anchor_idx] - chosen_labels[query_idx])
distance = (chosen_labels[anchor_idx] - chosen_labels[query_idx]).item()

return chosen_run_idx, anchor_idx, query_idx, distance, domain_label

Expand All @@ -536,13 +536,15 @@ def _build_pair(
run: torch.Tensor,
anchor_idx: int,
query_idx: int,
distance: int,
distance: Union[int, float],
domain_label: int,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
anchors = run[anchor_idx]
queries = run[query_idx]
domain_tensor = torch.tensor(domain_label, dtype=torch.float)
distances = torch.tensor(distance, dtype=torch.float) / self._max_rul
distances = torch.clamp_max(distances, max=1) # max distance is max_rul
distances = torch.tensor(distance, dtype=torch.float)
if self._max_rul is not None: # normalize only if max_rul is set
distances /= self._max_rul
distances = torch.clamp_max(distances, max=1)

return anchors, queries, distances, domain_tensor

0 comments on commit 4e4bd6b

Please sign in to comment.