Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add butcher methods for survival::coxph() #243

Merged
merged 5 commits into from
Jan 18, 2023
Merged

add butcher methods for survival::coxph() #243

merged 5 commits into from
Jan 18, 2023

Conversation

simonpcouch
Copy link
Contributor

Related to #234. Also no NEWS update.🐻

There's a $terms slot that carries around a hefty environment that we'd usually sub out with rlang::base_env(), but the predict.coxph() source taps into it quite a bit.

library(survival)
library(butcher)

example_data <-
  tibble::tibble(
    time = rpois(1000, 2) + 1,
    status = rbinom(1000, 1, .5),
    x = rpois(1000, .5),
    covar = rbinom(1000, 1, .5)
  )

example_data
#> # A tibble: 1,000 × 4
#>     time status     x covar
#>    <dbl>  <int> <int> <int>
#>  1     1      0     0     0
#>  2     2      0     0     0
#>  3     2      1     0     1
#>  4     3      0     1     0
#>  5     5      0     1     1
#>  6     1      0     0     1
#>  7     2      0     0     1
#>  8     7      1     0     1
#>  9     2      1     2     1
#> 10     2      0     1     1
#> # … with 990 more rows

make_big_model <- function() {
  boop <- runif(1e6)
  coxph(Surv(time, status) ~ x + strata(covar), example_data)
}

res <- make_big_model()

weigh(res)
#> # A tibble: 20 × 2
#>    object                    size
#>    <chr>                    <dbl>
#>  1 terms                 8.01    
#>  2 formula               8.00    
#>  3 residuals             0.0722  
#>  4 y                     0.0177  
#>  5 linear.predictors     0.00805 
#>  6 call                  0.00146 
#>  7 concordance           0.000752
#>  8 coefficients          0.00028 
#>  9 means                 0.00028 
#> 10 wald.test             0.00028 
#> 11 var                   0.000224
#> 12 xlevels.strata(covar) 0.000176
#> 13 method                0.000112
#> 14 loglik                0.000064
#> 15 score                 0.000056
#> 16 iter                  0.000056
#> 17 n                     0.000056
#> 18 nevent                0.000056
#> 19 assign.x              0.000056
#> 20 timefix               0.000056
weigh(butcher(res))
#> # A tibble: 20 × 2
#>    object                    size
#>    <chr>                    <dbl>
#>  1 terms                 8.01    
#>  2 residuals             0.0722  
#>  3 linear.predictors     0.00805 
#>  4 formula               0.00149 
#>  5 call                  0.00146 
#>  6 concordance           0.000752
#>  7 coefficients          0.00028 
#>  8 means                 0.00028 
#>  9 wald.test             0.00028 
#> 10 var                   0.000224
#> 11 xlevels.strata(covar) 0.000176
#> 12 method                0.000112
#> 13 loglik                0.000064
#> 14 score                 0.000056
#> 15 iter                  0.000056
#> 16 n                     0.000056
#> 17 nevent                0.000056
#> 18 assign.x              0.000056
#> 19 timefix               0.000056
#> 20 y                     0.000048

# try to make those terms more minimal....
attr(res$terms, ".Environment") <- rlang::base_env()

# but noooo!
predict(res, example_data[1:100,])
#> Error in is.data.frame(data): object 'example_data' not found

Created on 2022-12-22 with reprex v2.0.2

There's an environment on the terms object that is quite "heavy," though coxph errors out if it's reset with `base_env()`.
Copy link
Member

@juliasilge juliasilge left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Looks good! 🚀

@juliasilge juliasilge merged commit 11a6dc2 into main Jan 18, 2023
@juliasilge juliasilge deleted the coxph-234 branch January 18, 2023 22:48
@github-actions
Copy link

github-actions bot commented Feb 2, 2023

This pull request has been automatically locked. If you believe you have found a related problem, please file a new issue (with a reprex: https://reprex.tidyverse.org) and link to this issue.

@github-actions github-actions bot locked and limited conversation to collaborators Feb 2, 2023
Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants