Http是客户端/服务器模式中请求-响应所用的协议,在这种模式中,客户端(一般是web浏览器)向服务器提交HTTP请求,服务器响应请求的资源
HTTP是半双工协议,也就是说,在同一时刻数据只能单向流动,客户端向服务器发送请求(单向的),然后服务器响应请求(单向的)。
服务器不能主动推送数据给浏览器。
Comet是一种用于web的推送技术,能使服务器能实时地将更新的信息传送到客户端,而无须客户端发出请求,目前有三种实现方式:轮询(polling) 长轮询(long-polling)和iframe流(streaming)。
轮询是客户端和服务器之间会一直进行连接,每隔一段时间就询问一次
这种方式连接数会很多,一个接受,一个发送。而且每次发送请求都会有Http的Header,会很耗流量,也会消耗CPU的利用率
let express = require('express');
let app = express();
app.use(express.static(__dirname));
app.use(function(req,res,next){
res.header('Access-Control-Allow-Origin', 'http://localhost:8000');
res.end(new Date().toLocaleTimeString());
});
app.listen(8080);
<body>
<div id="clock"></div>
<script>
setInterval(function () {
let xhr = new XMLHttpRequest();
xhr.open('GET', 'http://localhost:8080', true);
xhr.onreadystatechange = function () {
if (xhr.readyState == 4 && xhr.status == 200) {
document.querySelector('#clock').innerHTML = xhr.responseText;
}
}
xhr.send();
}, 1000);
</script>
</body>
长轮询是对轮询的改进版,客户端发送HTTP给服务器之后,看有没有新消息,如果没有新消息,就一直等待
当有新消息的时候,才会返回给客户端。在某种程度上减小了网络带宽和CPU利用率等问题。
由于http数据包的头部数据量往往很大(通常有400多个字节),但是真正被服务器需要的数据却很少(有时只有10个字节左右),这样的数据包在网络上周期性的传输,难免对网络带宽是一种浪费
<div id="clock"></div>
<script>
(function poll() {
let xhr = new XMLHttpRequest();
xhr.open('GET', 'http://localhost:8080', true);
xhr.onreadystatechange = function () {
if (xhr.readyState == 4 && xhr.status == 200) {
document.querySelector('#clock').innerHTML = xhr.responseText;
poll();
}
}
xhr.send();
})();
</script>
long poll 需要有很高的并发能力
通过在HTML页面里嵌入一个隐藏的iframe,然后将这个iframe的src属性设为对一个长连接的请求,服务器端就能源源不断地往客户推送数据。
server.js
const express = require('express');
const app = express();
app.use(express.static(__dirname));
app.get('/clock', function (req, res) {
setInterval(function () {
res.write(`
<script type="text/javascript">
parent.document.getElementById('clock').innerHTML = "${new Date().toLocaleTimeString()}";
</script>
`);
}, 1000);
});
app.listen(8080);
client.html
<div id="clock"></div>
<iframe src="/clock" style=" display:none" />
HTML5规范中提供了服务端事件EventSource,浏览器在实现了该规范的前提下创建一个EventSource连接后,便可收到服务端的发送的消息,这些消息需要遵循一定的格式,对于前端开发人员而言,只需在浏览器中侦听对应的事件皆可
SSE的简单模型是:一个客户端去从服务器端订阅一条流,之后服务端可以发送消息给客户端直到服务端或者客户端关闭该“流”,所以eventsource也叫作"server-sent-event`
EventSource流的实现方式对客户端开发人员而言非常简单,兼容性良好
对于服务端,它可以兼容老的浏览器,无需upgrade为其他协议,在简单的服务端推送的场景下可以满足需求
浏览器端,需要创建一个EventSource对象,并且传入一个服务端的接口URI作为参
默认EventSource对象通过侦听message事件获取服务端传来的消息
open事件则在http连接建立后触发
error事件会在通信错误(连接中断、服务端返回数据失败)的情况下触发
同时EventSource规范允许服务端指定自定义事件,客户端侦听该事件即可
<script>
var eventSource = new EventSource('/eventSource');
eventSource.onmessage = function(e){
console.log(e.data);
}
eventSource.onerror = function(err){
console.log(err);
}
</script>
事件流的对应MIME格式为text/event-stream,而且其基于HTTP长连接。针对HTTP1.1规范默认采用长连接,针对HTTP1.0的服务器需要特殊设置。
event-source必须编码成utf-8的格式,消息的每个字段使用"\n"来做分割,并且需要下面4个规范定义好的字段:
Event: 事件类型
Data: 发送的数据
ID: 每一条事件流的ID
Retry: 告知浏览器在所有的连接丢失之后重新开启新的连接等待的时间,在自动重新连接的过程中,之前收到的最后一个事件流ID会被发送到服务端
let express = require('express');
let app = express();
app.use(express.static(__dirname));
let sendCount = 1;
app.get('/eventSource',function(req,res){
res.header('Content-Type','text/event-stream',);
setInterval(() => {
res.write(`event:message\nid:${sendCount++}\ndata:${Date.now()}\n\n`);
}, 1000)
});
app.listen(8888);
let express = require('express');
let app = express();
app.use(express.static(__dirname));
const SseStream = require('ssestream');
let sendCount = 1;
app.get('/eventSource',function(req,res){
const sseStream = new SseStream(req);
sseStream.pipe(res);
const pusher = setInterval(() => {
sseStream.write({
id: sendCount++,
event: 'message',
retry: 20000, // 告诉客户端,如果断开连接后,20秒后再重试连接
data: {ts: new Date().toTimeString()}
})
}, 1000)
res.on('close', () => {
clearInterval(pusher);
sseStream.unpipe(res);
})
});
app.listen(8888);
WebSockets_API 规范定义了一个 API 用以在网页浏览器和服务器建立一个 socket 连接。通俗地讲:在客户端和服务器保有一个持久的连接,两边可以在任意时间开始发送数据。
HTML5开始提供的一种浏览器与服务器进行全双工通讯的网络技术
属于应用层协议,它基于TCP传输协议,并复用HTTP的握手通道。
支持双向通信,实时性更强。
更好的二进制支持。
较少的控制开销。连接创建后,ws客户端、服务端进行数据交换时,协议控制的数据包头部较小。
let express = require('express');
const path = require('path');
let app = express();
let server = require('http').createServer(app);
app.get('/', function (req, res) {
res.sendFile(path.resolve(__dirname, 'index.html'));
});
app.listen(3000);
//-----------------------------------------------
let WebSocketServer = require('ws').Server;
let wsServer = new WebSocketServer({ port: 8888 });
wsServer.on('connection', function (socket) {
console.log('连接成功');
socket.on('message', function (message) {
console.log('接收到客户端消息:' + message);
socket.send('服务器回应:' + message);
});
});
<script>
let ws = new WebSocket('ws://localhost:8888');
ws.onopen = function () {
console.log('客户端连接成功');
ws.send('hello');
}
ws.onmessage = function (event) {
console.log('收到服务器的响应 ' + event.data);
}
</script>
WebSocket复用了HTTP的握手通道。具体指的是,客户端通过HTTP请求与WebSocket服务端协商升级协议。协议升级完成后,后续的数据交换则遵照WebSocket的协议。
首先,客户端发起协议升级请求。可以看到,采用的是标准的HTTP报文格式,且只支持GET方法。
GET ws://localhost:8888/ HTTP/1.1
Host: localhost:8888
Connection: Upgrade
Upgrade: websocket
Sec-WebSocket-Version: 13
Sec-WebSocket-Key: IHfMdf8a0aQXbwQO1pkGdA==
Connection: Upgrade:表示要升级协议
Upgrade: websocket:表示要升级到websocket协议
Sec-WebSocket-Version: 13:表示websocket的版本
Sec-WebSocket-Key:与后面服务端响应首部的Sec-WebSocket-Accept是配套的,提供基本的防护,比如恶意的连接,或者无意的连接。
服务端返回内容如下,状态代码101表示协议切换。到此完成协议升级,后续的数据交互都按照新的协议来。
HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: aWAY+V/uyz5ILZEoWuWdxjnlb7E=
const net = require('net');
const crypto = require('crypto');
const CODE = '258EAFA5-E914-47DA-95CA-C5AB0DC85B11';
let server = net.createServer(function (socket) {
socket.once('data', function (data) {
data = data.toString();
if (data.match(/Upgrade: websocket/)) {
let rows = data.split('\r\n');//按分割符分开
rows = rows.slice(1, -2);//去掉请求行和尾部的二个分隔符
const headers = {};
rows.forEach(row => {
let [key, value] = row.split(': ');
headers[key] = value;
});
if (headers['Sec-WebSocket-Version'] == 13) {
let wsKey = headers['Sec-WebSocket-Key'];
let acceptKey = crypto.createHash('sha1').update(wsKey + CODE).digest('base64');
let response = [
'HTTP/1.1 101 Switching Protocols',
'Upgrade: websocket',
`Sec-WebSocket-Accept: ${acceptKey}`,
'Connection: Upgrade',
'\r\n'
].join('\r\n');
socket.write(response);
socket.on('data', function (buffers) {
let _fin = (buffers[0] & 0b10000000) === 0b10000000;//判断是否是结束位,第一个bit是不是1
let _opcode = buffers[0] & 0b00001111;//取一个字节的后四位,得到的一个是十进制数
let _masked = buffers[1] & 0b100000000 === 0b100000000;//第一位是否是1
let _payloadLength = buffers[1] & 0b01111111;//取得负载数据的长度
let _mask = buffers.slice(2, 6);//掩码
let payload = buffers.slice(6);//负载数据
unmask(payload, _mask);//对数据进行解码处理
//向客户端响应数据
let response = Buffer.alloc(2 + payload.length);
response[0] = _opcode | 0b10000000;//1表示发送结束
response[1] = payload.length;//负载的长度
payload.copy(response, 2);
socket.write(response);
});
}
}
});
function unmask(buffer, mask) {
const length = buffer.length;
for (let i = 0; i < length; i++) {
buffer[i] ^= mask[i & 3];
}
}
socket.on('end', function () {
console.log('end');
});
socket.on('close', function () {
console.log('close');
});
socket.on('error', function (error) {
console.log(error);
});
});
server.listen(9999);