-
Notifications
You must be signed in to change notification settings - Fork 18
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #16 from JeanKossaifi/main
Adds efficient factorized linear implementations
- Loading branch information
Showing
5 changed files
with
179 additions
and
41 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,28 +1,61 @@ | ||
import torch | ||
from .factorized_tensordot import tensor_dot_tucker, tensor_dot_cp | ||
import tensorly as tl | ||
from collections import Counter | ||
from tensorly.tt_tensor import TTTensor | ||
|
||
tl.set_backend('pytorch') | ||
|
||
# Author: Taylor Lee Patti <taylorpatti@g.harvard.edu> | ||
|
||
def tt_factorized_linear(tt_vec, ttm_weights): | ||
"""Contracts a TT tensor with a TT matrix and returns a TT tensor. | ||
Parameters | ||
---------- | ||
tt_vec : tensor train tensor | ||
ttm_weights : tensor train matrix | ||
Returns | ||
------- | ||
The tensor train tensor obtained for contracting the TT tensor and the TT matrix. | ||
""" | ||
ncores = len(tt_vec) | ||
contr_layer = [] | ||
for i in range(ncores): | ||
dimW, dimX = ttm_weights[i].shape, tt_vec[i].shape | ||
contr = tl.einsum('abc,debf->adecf', tt_vec[i], ttm_weights[i]) | ||
contr_layer.append(tl.reshape(contr, (dimW[0]*dimX[0], dimW[1], dimW[3]*dimX[2]))) | ||
return TTTensor(contr_layer) | ||
# Author: Jean Kossaifi | ||
|
||
def linear_tucker(tensor, tucker_matrix, transpose=True): | ||
if transpose: | ||
contraction_axis = 1 | ||
else: | ||
contraction_axis = 0 | ||
n_rows = len(tucker_matrix.tensorized_shape[contraction_axis]) | ||
tensor = tensor.reshape(-1, *tucker_matrix.tensorized_shape[contraction_axis]) | ||
|
||
modes_tensor = list(range(tensor.ndim - n_rows, tensor.ndim)) | ||
if transpose: | ||
modes_tucker = list(range(n_rows, tucker_matrix.order)) | ||
else: | ||
modes_tucker = list(range(n_rows)) | ||
|
||
return tensor_dot_tucker(tensor, tucker_matrix, (modes_tensor, modes_tucker)) | ||
|
||
def linear_cp(tensor, cp_matrix, transpose=True): | ||
if transpose: | ||
out_features, in_features = len(cp_matrix.tensorized_shape[0]), len(cp_matrix.tensorized_shape[1]) | ||
in_shape = cp_matrix.tensorized_shape[1] | ||
modes_cp = list(range(out_features, cp_matrix.order)) | ||
else: | ||
in_features, out_features = len(cp_matrix.tensorized_shape[0]), len(cp_matrix.tensorized_shape[1]) | ||
in_shape = cp_matrix.tensorized_shape[0] | ||
modes_cp = list(range(in_features)) | ||
tensor = tensor.reshape(-1, *in_shape) | ||
|
||
modes_tensor = list(range(1, tensor.ndim)) | ||
|
||
return tensor_dot_cp(tensor, cp_matrix, (modes_tensor, modes_cp)) | ||
|
||
|
||
def linear_blocktt(tensor, tt_matrix, transpose=True): | ||
if transpose: | ||
contraction_axis = 1 | ||
else: | ||
contraction_axis = 0 | ||
ndim = len(tt_matrix.tensorized_shape[contraction_axis]) | ||
tensor = tensor.reshape(-1, *tt_matrix.tensorized_shape[contraction_axis]) | ||
|
||
bs = 'a' | ||
start = ord(bs) + 1 | ||
in_idx = bs + ''.join(chr(i) for i in [start+i for i in range(ndim)]) | ||
factors_idx = [] | ||
for i in range(ndim): | ||
if transpose: | ||
idx = [start+ndim*2+i, start+ndim+i, start+i, start+ndim*2+i+1] | ||
else: | ||
idx = [start+ndim*2+i, start+i, start+ndim+i, start+ndim*2+i+1] | ||
factors_idx.append(''.join(chr(j) for j in idx)) | ||
out_idx = bs + ''.join(chr(i) for i in [start + ndim + i for i in range(ndim)]) | ||
eq = in_idx + ',' + ','.join(i for i in factors_idx) + '->' + out_idx | ||
res = tl.einsum(eq, tensor, *tt_matrix.factors) | ||
return tl.reshape(res, (tl.shape(res)[0], -1)) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
# Author: Jean Kossaifi | ||
|
||
import tensorly as tl | ||
from tensorly.tenalg.tenalg_utils import _validate_contraction_modes | ||
tl.set_backend('pytorch') | ||
|
||
einsum_symbols = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' | ||
|
||
|
||
def tensor_dot_tucker(tensor, tucker, modes): | ||
modes_tensor, modes_tucker = _validate_contraction_modes(tl.shape(tensor), tucker.tensor_shape, modes) | ||
input_order = tensor.ndim | ||
weight_order = tucker.order | ||
|
||
sorted_modes_tucker = sorted(modes_tucker, reverse=True) | ||
sorted_modes_tensor = sorted(modes_tensor, reverse=True) | ||
|
||
# Symbol for dimensionality of the core | ||
rank_sym = [einsum_symbols[i] for i in range(weight_order)] | ||
|
||
# Symbols for tucker weight size | ||
tucker_sym = [einsum_symbols[i+weight_order] for i in range(weight_order)] | ||
|
||
# Symbolds for input tensor | ||
tensor_sym = [einsum_symbols[i+2*weight_order] for i in range(tensor.ndim)] | ||
|
||
# Output: input + weights symbols after removing contraction symbols | ||
output_sym = tensor_sym + tucker_sym | ||
for m in sorted_modes_tucker: | ||
output_sym.pop(m+input_order) | ||
for m in sorted_modes_tensor: | ||
output_sym.pop(m) | ||
for i, e in enumerate(modes_tensor): | ||
tensor_sym[e] = tucker_sym[modes_tucker[i]] | ||
|
||
# Form the actual equation: tensor, core, factors -> output | ||
eq = ''.join(tensor_sym) | ||
eq += ',' + ''.join(rank_sym) | ||
eq += ',' + ','.join(f'{s}{r}' for s,r in zip(tucker_sym,rank_sym)) | ||
eq += '->' + ''.join(output_sym) | ||
|
||
return tl.einsum(eq, tensor, tucker.core, *tucker.factors) | ||
|
||
|
||
def tensor_dot_cp(tensor, cp, modes): | ||
"""Contracts a to CP tensors in factorized form | ||
Returns | ||
------- | ||
tensor = tensor x cp_matrix.to_matrix().T | ||
""" | ||
try: | ||
cp_shape = cp.tensor_shape | ||
except AttributeError: | ||
cp_shape = cp.shape | ||
modes_tensor, modes_cp = _validate_contraction_modes(tl.shape(tensor), cp_shape, modes) | ||
|
||
tensor_order = tl.ndim(tensor) | ||
# CP rank = 'a', start at b | ||
start = ord('b') | ||
eq_in = ''.join(f'{chr(start+index)}' for index in range(tensor_order)) | ||
eq_factors = [] | ||
eq_res = ''.join(eq_in[i] if i not in modes_tensor else '' for i in range(tensor_order)) | ||
counter_joint = 0 # contraction modes, shared indices between tensor and CP | ||
counter_free = 0 # new uncontracted modes from the CP | ||
for i in range(len(cp.factors)): | ||
if i in modes_cp: | ||
eq_factors.append(f'{eq_in[modes_tensor[counter_joint]]}a') | ||
counter_joint += 1 | ||
else: | ||
eq_factors.append(f'{chr(start+tensor_order+counter_free)}a') | ||
eq_res += f'{chr(start+tensor_order+counter_free)}' | ||
counter_free += 1 | ||
|
||
eq_factors = ','.join(f for f in eq_factors) | ||
eq = eq_in + ',a,' + eq_factors + '->' + eq_res | ||
res = tl.einsum(eq, tensor, cp.weights, *cp.factors) | ||
|
||
return res |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
from ...factorized_tensors import TensorizedTensor | ||
from ..factorized_linear import linear_tucker, linear_blocktt, linear_cp | ||
import torch | ||
|
||
import tensorly as tl | ||
tl.set_backend('pytorch') | ||
from tensorly import testing | ||
from tensorly.utils import prod | ||
|
||
import pytest | ||
|
||
# Author: Jean Kossaifi | ||
|
||
|
||
@pytest.mark.parametrize('factorization, factorized_linear', | ||
[('tucker', linear_tucker), ('blocktt', linear_blocktt), ('cp', linear_cp)]) | ||
def test_linear_tensor_dot_tucker(factorization, factorized_linear): | ||
in_shape = (4, 5) | ||
in_dim = prod(in_shape) | ||
out_shape = (6, 2) | ||
rank = 3 | ||
batch_size = 2 | ||
|
||
tensor = tl.randn((batch_size, in_dim)) | ||
fact_weight = TensorizedTensor.new((out_shape, in_shape), rank=rank, | ||
factorization=factorization) | ||
fact_weight.normal_() | ||
full_weight = fact_weight.to_matrix() | ||
true_res = torch.matmul(tensor, full_weight.T) | ||
res = factorized_linear(tensor, fact_weight, transpose=True) | ||
res = res.reshape(batch_size, -1) | ||
testing.assert_array_almost_equal(true_res, res, decimal=5) | ||
|