Hapax is a powerful Python framework for building type-safe, observable data processing pipelines. Built on top of OpenLit, it provides multi-stage type checking, rich error messages, and comprehensive monitoring out of the box.
✨ Multi-Stage Type Safety
- Import-time type validation through
@ops
decorator - Definition-time type checking when building graphs
- Runtime type validation during execution
- Rich error messages that pinpoint issues
🔍 Static Analysis
- Graph structure validation
- Cycle detection
- Type compatibility verification
- Configuration and metadata checks
📊 OpenLit Integration
- Automatic monitoring and observability
- Execution time tracking
- Success/failure rates
- Graph visualization
🎮 Intuitive API
- Fluent interface for building pipelines
- Type-safe operation composition using
>>
- Rich control flow (branch, merge, condition, loop)
- Install Hapax:
pip install hapax
- Create your first pipeline:
from hapax import ops, graph
import openlit
from typing import List, Dict
# Initialize OpenLit (optional but recommended)
openlit.init(otlp_endpoint="http://127.0.0.1:4318")
# Define operations - type checked at import time
@ops(name="clean_text")
def clean_text(text: str) -> str:
return text.lower().strip()
@ops(name="tokenize")
def tokenize(text: str) -> List[str]:
return text.split()
@ops(name="analyze")
def analyze(tokens: List[str]) -> Dict[str, int]:
from collections import Counter
return dict(Counter(tokens))
# Build pipeline - type compatibility checked at definition time
pipeline = (
Graph("text_processing")
.then(clean_text) # str -> str
.then(tokenize) # str -> List[str]
.then(analyze) # List[str] -> Dict[str, int]
)
# Execute pipeline - types checked at runtime
result = pipeline.execute("Hello World! Hello Hapax!")
Operations are pure functions with multi-stage type checking:
@ops(name="summarize", tags=["nlp"])
def summarize(text: str) -> str:
"""Generate a concise summary."""
return summary
# Type checking happens at:
# 1. Import time - through @ops decorator
# 2. Definition time - when used in a graph
# 3. Runtime - during execution
result = summarize(42) # Runtime TypeError: Expected str, got int
Build complex pipelines with immediate type validation:
# Using the fluent API - type compatibility checked at definition time
pipeline = (
Graph("text_analysis")
.then(clean_text) # str -> str
.branch(
summarize, # str -> str
sentiment_analysis # str -> float
)
.merge(combine_results)
)
# Or using the >> operator for composition
pipeline = clean_text >> tokenize >> analyze # Type compatibility checked immediately
Rich control flow operations with type safety:
# Parallel Processing
pipeline = (
Graph("parallel_nlp")
.branch(
summarize, # Branch 1: str -> str
extract_entities, # Branch 2: str -> List[str]
analyze_sentiment # Branch 3: str -> float
)
.merge(lambda results: {
"summary": results[0],
"entities": results[1],
"sentiment": results[2]
})
)
# Conditional Logic
pipeline = (
Graph("smart_translate")
.then(detect_language)
.condition(
lambda lang: lang != "en",
translate_to_english, # If true
lambda x: x # If false (pass through)
)
)
Hapax is built on OpenLit for automatic monitoring:
# 1. Basic Setup
import openlit
openlit.init(otlp_endpoint="http://localhost:4318")
# 2. Operation-Level Monitoring
@ops(
name="tokenize",
tags=["nlp"],
openlit_config={
"trace_content": True,
"disable_metrics": False
}
)
def tokenize(text: str) -> List[str]:
return text.split()
# 3. Graph-Level Monitoring
@graph(
name="nlp_pipeline",
description="Process text using NLP"
)
def process_text(text: str) -> Dict[str, Any]:
return clean >> analyze
Hapax provides clear error messages:
# Type Mismatch
TypeError: Cannot compose operations: output type List[str] does not match input type Dict[str, Any]
# Structural Issues
GraphValidationError: Graph contains cycles: [['op1', 'op2', 'op1']]
# Runtime Errors
BranchError: Errors in branches: [('sentiment', ValueError('Invalid input'))]
-
Type Safety
- Always specify input and output types
- Let Hapax handle type validation
- Use mypy for additional static checking
-
Operation Design
- Keep operations pure and focused
- Use meaningful names
- Add proper documentation
-
Monitoring
- Initialize OpenLit early
- Add meaningful tags
- Use trace_content for debugging
-
Error Handling
- Handle branch errors appropriately
- Check partial results in case of failures
- Use the rich error information
For more detailed information, check out:
MIT License - see LICENSE for details.