-
Notifications
You must be signed in to change notification settings - Fork 34
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Tim Dozat
committed
Jun 7, 2017
1 parent
b7ce7e2
commit d5159a1
Showing
1 changed file
with
118 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
#!/usr/bin/env python | ||
# -*- coding: UTF-8 -*- | ||
|
||
# Copyright 2016 Timothy Dozat | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
import numpy as np | ||
import tensorflow as tf | ||
|
||
from parser.neural.models.nlp.parsers.base_parser import BaseParser | ||
|
||
#*************************************************************** | ||
class BinParser(BaseParser): | ||
"""""" | ||
|
||
#============================================================= | ||
def __call__(self, vocabs, moving_params=None): | ||
"""""" | ||
|
||
top_recur = super(BinParser, self).__call__(vocabs, moving_params=moving_params) | ||
int_tokens_to_keep = tf.to_int32(self.tokens_to_keep) | ||
|
||
with tf.variable_scope('MLP'): | ||
dep_mlp, head_mlp = self.MLP(top_recur, self.arc_mlp_size + self.rel_mlp_size + self.p_mlp_size, | ||
n_splits=2) | ||
arc_dep_mlp, rel_dep_mlp, p_dep_mlp = tf.split(dep_mlp, [self.arc_mlp_size, self.rel_mlp_size, self.p_mlp_size], axis=2) | ||
arc_head_mlp, rel_head_mlp, p_head_mlp = tf.split(head_mlp, [self.arc_mlp_size, self.rel_mlp_size, self.p_mlp_size], axis=2) | ||
|
||
with tf.variable_scope('p'): | ||
# (n x b x d) o (d x 1 x d) o (n x b x d).T -> (n x b x b) | ||
arc_ps = self.bilinear(p_dep_mlp, p_head_mlp, 1) | ||
# (b x 1) | ||
arc_logits = -tf.nn.softplus(arc_ps) | ||
|
||
with tf.variable_scope('Arc'): | ||
# (n x b x d) o (d x 1 x d) o (n x b x d).T -> (n x b x b) | ||
arc_logits += self.bilinear(arc_dep_mlp, arc_head_mlp, 1, add_bias2=False) | ||
# (n x b x b) | ||
arc_probs = tf.nn.softmax(arc_logits) | ||
# (n x b) | ||
arc_preds = tf.to_int32(tf.argmax(arc_logits, axis=-1)) | ||
# (n x b) | ||
arc_targets = self.vocabs['heads'].placeholder | ||
# (n x b) | ||
arc_correct = tf.to_int32(tf.equal(arc_preds, arc_targets))*int_tokens_to_keep | ||
# () | ||
arc_loss = tf.losses.sparse_softmax_cross_entropy(arc_targets, arc_logits, self.tokens_to_keep) | ||
|
||
with tf.variable_scope('Rel'): | ||
# (n x b x d) o (d x r x d) o (n x b x d).T -> (n x b x r x b) | ||
rel_logits = self.bilinear(rel_dep_mlp, rel_head_mlp, len(self.vocabs['rels'])) | ||
# (n x b x r x b) | ||
rel_probs = tf.nn.softmax(rel_logits, dim=2) | ||
# (n x b x b) | ||
one_hot = tf.one_hot(arc_preds if moving_params is not None else arc_targets, self.bucket_size) | ||
# (n x b x b) -> (n x b x b x 1) | ||
one_hot = tf.expand_dims(one_hot, axis=3) | ||
# (n x b x r x b) o (n x b x b x 1) -> (n x b x r x 1) | ||
select_rel_logits = tf.matmul(rel_logits, one_hot) | ||
# (n x b x r x 1) -> (n x b x r) | ||
select_rel_logits = tf.squeeze(select_rel_logits, axis=3) | ||
# (n x b) | ||
rel_preds = tf.to_int32(tf.argmax(select_rel_logits, axis=-1)) | ||
# (n x b) | ||
rel_targets = self.vocabs['rels'].placeholder | ||
# (n x b) | ||
rel_correct = tf.to_int32(tf.equal(rel_preds, rel_targets))*int_tokens_to_keep | ||
# () | ||
rel_loss = tf.losses.sparse_softmax_cross_entropy(rel_targets, select_rel_logits, self.tokens_to_keep) | ||
|
||
n_arc_correct = tf.reduce_sum(arc_correct) | ||
n_rel_correct = tf.reduce_sum(rel_correct) | ||
correct = arc_correct * rel_correct | ||
n_correct = tf.reduce_sum(correct) | ||
n_seqs_correct = tf.reduce_sum(tf.to_int32(tf.equal(tf.reduce_sum(correct, axis=1), self.sequence_lengths-1))) | ||
loss = arc_loss + rel_loss | ||
|
||
outputs = { | ||
'arc_logits': arc_logits, | ||
'arc_probs': arc_probs, | ||
'arc_preds': arc_preds, | ||
'arc_targets': arc_targets, | ||
'arc_correct': arc_correct, | ||
'arc_loss': arc_loss, | ||
'n_arc_correct': n_arc_correct, | ||
|
||
'rel_logits': rel_logits, | ||
'rel_probs': rel_probs, | ||
'rel_preds': rel_preds, | ||
'rel_targets': rel_targets, | ||
'rel_correct': rel_correct, | ||
'rel_loss': rel_loss, | ||
'n_rel_correct': n_rel_correct, | ||
|
||
'n_tokens': self.n_tokens, | ||
'n_seqs': self.batch_size, | ||
'tokens_to_keep': self.tokens_to_keep, | ||
'n_correct': n_correct, | ||
'n_seqs_correct': n_seqs_correct, | ||
'loss': loss | ||
} | ||
|
||
return outputs |