CONTENTS
Enhance the functionality of diffusers.
- Search models from huggingface and Civitai.
pip install --quiet auto_diffusers
from auto_diffusers import EasyPipelineForText2Image
# Search for Huggingface
pipe = EasyPipelineForText2Image.from_huggingface("any").to("cuda")
img = pipe("cat").images[0]
img.save("cat.png")
# Search for Civitai
pipe = EasyPipelineForText2Image.from_civitai("any").to("cuda")
image = pipe("cat").images[0]
image.save("cat.png")
from pipeline_easy import (
search_huggingface,
search_civitai,
)
# Search Lora
Lora = search_civitai(
"Keyword_to_search_Lora",
model_type="LORA",
base_model = "SD 1.5",
download=True,
)
# Load Lora into the pipeline.
pipeline.load_lora_weights(Lora)
# Search TextualInversion
TextualInversion = search_civitai(
"EasyNegative",
model_type="TextualInversion",
base_model = "SD 1.5",
download=True
)
# Load TextualInversion into the pipeline.
pipeline.load_textual_inversion(TextualInversion, token="EasyNegative")
Tip
If an error occurs, insert the token
and run again.
Name | Type | Default | Description |
---|---|---|---|
search_word | string, Path | ー | The search query string. Can be a keyword, Civitai URL, local directory or file path. |
model_type | string | Checkpoint |
The type of model to search for. (for example Checkpoint , TextualInversion , Controlnet , LORA , Hypernetwork , AestheticGradient , Poses ) |
base_model | string | None | Trained model tag (for example SD 1.5 , SD 3.5 , SDXL 1.0 ) |
torch_dtype | string, torch.dtype | None | Override the default torch.dtype and load the model with another dtype. |
force_download | bool | False | Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. |
cache_dir | string, Path | None | Path to the folder where cached files are stored. |
resume | bool | False | Whether to resume an incomplete download. |
token | string | None | API token for Civitai authentication. |
Name | Type | Default | Description |
---|---|---|---|
search_word | string, Path | ー | The search query string. Can be a keyword, Civitai URL, local directory or file path. |
model_type | string | Checkpoint |
The type of model to search for. (for example Checkpoint , TextualInversion , Controlnet , LORA , Hypernetwork , AestheticGradient , Poses ) |
base_model | string | None | Trained model tag (for example SD 1.5 , SD 3.5 , SDXL 1.0 ) |
download | bool | False | Whether to download the model. |
force_download | bool | False | Whether to force the download if the model already exists. |
cache_dir | string, Path | None | Path to the folder where cached files are stored. |
resume | bool | False | Whether to resume an incomplete download. |
token | string | None | API token for Civitai authentication. |
include_params | bool | False | Whether to include parameters in the returned data. |
skip_error | bool | False | Whether to skip errors and return None. |
Tip
If an error occurs, insert the token
and run again.
Name | Type | Default | Description |
---|---|---|---|
search_word | string, Path | ー | The search query string. Can be a keyword, Hugging Face URL, local directory or file path, or a Hugging Face path (<creator>/<repo> ). |
checkpoint_format | string | single_file |
The format of the model checkpoint. ● single_file to search for single file checkpoint ● diffusers to search for multifolder diffusers format checkpoint |
torch_dtype | string, torch.dtype | None | Override the default torch.dtype and load the model with another dtype. |
force_download | bool | False | Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. |
cache_dir | string, Path | None | Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. |
token | string, bool | None | The token to use as HTTP bearer authorization for remote files. |
Name | Type | Default | Description |
---|---|---|---|
search_word | string, Path | ー | The search query string. Can be a keyword, Hugging Face URL, local directory or file path, or a Hugging Face path (<creator>/<repo> ). |
checkpoint_format | string | single_file |
The format of the model checkpoint. ● single_file to search for single file checkpoint ● diffusers to search for multifolder diffusers format checkpoint |
pipeline_tag | string | None | Tag to filter models by pipeline. |
download | bool | False | Whether to download the model. |
force_download | bool | False | Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. |
cache_dir | string, Path | None | Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. |
token | string, bool | None | The token to use as HTTP bearer authorization for remote files. |
include_params | bool | False | Whether to include parameters in the returned data. |
skip_error | bool | False | Whether to skip errors and return None. |
In accordance with Apache-2.0 license
I have used open source resources and free tools in the creation of this project.
I would like to take this opportunity to thank the open source community and those who provided free tools.