This repository has been archived by the owner on Jul 3, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 37
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
We still want built-in adapters, but for now this will work.
- Loading branch information
1 parent
a89ad3b
commit ca686c9
Showing
14 changed files
with
3,392 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,43 @@ | ||
# Data Loaders | ||
|
||
Among multiple uses, Hamilton excels at building maintainble, scalable reprsentations of ETLs. | ||
If you've read through the other guides, it should be pretty clear how hamilton enables transformations (the T in ETL). | ||
In this example, we'll talk about an approach to _Extracting_ data, and how Hamilton enables you to build out extracts, | ||
in a scalable, pluggable way. | ||
|
||
Note that while we're still coming up with higher-level abstractions, the approach outlined here is recommended. | ||
|
||
The goal is to show you two things: | ||
|
||
1. How to load data from various sources | ||
2. How to switch the sources of data you're loading from by swapping out modules, using[polymorphism](https://en.wikipedia.org/wiki/Polymorphism_(computer_science)) | ||
|
||
As such, we have three data loaders to use: | ||
|
||
1. [load_data_mock.py](load_data_mock.py): generates mock data on the fly. Meant to represent a unit-testing/quick iteration scenario. | ||
2. [load_data_csv.py](load_data_csv.py): Uses CSV data. Meant to represent more ad-hoc research. | ||
3. [load_data_duckdb.py](load_data_duckdb.py) Uses a duckdb database (saved locally). Meant to represent more production-ready dataflows, | ||
as well as demonstrate the ease of working with duckdb. | ||
|
||
But this is hardly exclusive, or exhaustive. One can easily imagine loading from snowflake, your custom datawarehouse, hdfs, etc... | ||
All by swapping out the data loaders. | ||
|
||
# Generating the data | ||
|
||
The data comes pregenerated in (test_data)[test_data], but we also included a script (written with hamilton!) to generate new mock data for you. | ||
|
||
To run it, run: | ||
|
||
- `python generate_test_data.py setup-duck-db --db-path my_data.duckdb` to create a duckdb database from scratch | ||
- 'python generate_test_data.py setup-csv --db-path my_data' to create a set of csv files that will function as our "database" | ||
|
||
# Loading/Analyzing the data | ||
|
||
To load/analyze the data, you can run the script `run.py` | ||
|
||
- `python run.py csv` reads from the `.csv` files and runs all the variables | ||
- `python run.py duckdb` reads from the `duckdb` database and runs all the variables | ||
- `python run.py mock` creates mock data and runs the pipeline | ||
|
||
Note that you, as the user, have to manually handle connections/whatnot for duckdb. | ||
We are currently designing the ability to do this natively in hamilton: https://github.com/stitchfix/hamilton/issues/197. |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,215 @@ | ||
import abc | ||
import os | ||
from types import ModuleType | ||
from typing import Any, Dict, List, Optional | ||
|
||
import click | ||
import duckdb as duckdb | ||
import pandas as pd | ||
|
||
from examples.data_loaders.utils import generate_random_walk_time_series | ||
from hamilton import ad_hoc_utils, driver, function_modifiers | ||
from hamilton.function_modifiers import tag | ||
|
||
"""Simple file to generate test data. This will then be saved to various locations for the rest of the example.""" | ||
|
||
|
||
def index(start_date: str = "20200101", end_date: str = "20220901") -> pd.Series: | ||
return pd.Series(pd.date_range(start_date, end_date)) | ||
|
||
|
||
@tag(**{"materialization.table": "marketing_spend"}) | ||
def marketing_spend_by_channel(index: pd.Series) -> pd.DataFrame: | ||
"""Marketing spend by channel. Randomly generated, meant to be increasing to broadcast growth. | ||
In this simple case, marketing spend is not partitioned by business line | ||
:param index: TS index to use to generate data | ||
:return: | ||
""" | ||
data = { | ||
"facebook": generate_random_walk_time_series( | ||
num_datapoints=len(index), | ||
start_value=10000, | ||
step_mean=100, | ||
step_stddev=2000, | ||
min_value=0, | ||
), | ||
"twitter": generate_random_walk_time_series( | ||
num_datapoints=len(index), | ||
start_value=10000, | ||
step_mean=50, | ||
step_stddev=1000, | ||
min_value=0, | ||
), | ||
"tv": generate_random_walk_time_series( | ||
num_datapoints=len(index), | ||
start_value=15000, | ||
step_mean=40, | ||
step_stddev=1400, | ||
min_value=0, | ||
), | ||
"youtube": generate_random_walk_time_series( | ||
num_datapoints=len(index), | ||
start_value=10000, | ||
step_mean=40, | ||
step_stddev=1600, | ||
min_value=0, | ||
), | ||
"radio": generate_random_walk_time_series( | ||
num_datapoints=len(index), start_value=5000, step_mean=20, step_stddev=800, min_value=0 | ||
), | ||
"billboards": generate_random_walk_time_series( | ||
num_datapoints=len(index), start_value=1000, step_mean=10, step_stddev=800, min_value=0 | ||
), | ||
"date": index, | ||
} | ||
return pd.DataFrame(data=data) | ||
|
||
|
||
@tag(**{"materialization.table": "signups"}) | ||
def signups_by_business_line(index: pd.Series) -> pd.DataFrame: | ||
data = { | ||
"womens": generate_random_walk_time_series( | ||
num_datapoints=len(index), | ||
start_value=1000, | ||
step_mean=1, | ||
step_stddev=20, | ||
min_value=0, | ||
apply=int, | ||
), | ||
"mens": generate_random_walk_time_series( | ||
num_datapoints=len(index), | ||
start_value=1000, | ||
step_mean=1, | ||
step_stddev=20, | ||
min_value=0, | ||
apply=int, | ||
), | ||
"date": index, | ||
} | ||
return pd.DataFrame(data) | ||
|
||
|
||
@tag(**{"materialization.table": "churn"}) | ||
def churn_by_business_line(index: pd.Series) -> pd.DataFrame: | ||
data = { | ||
"womens": generate_random_walk_time_series( | ||
num_datapoints=len(index), | ||
start_value=100, | ||
step_mean=0.05, | ||
step_stddev=3, | ||
min_value=0, | ||
apply=int, | ||
), | ||
"mens": generate_random_walk_time_series( | ||
num_datapoints=len(index), | ||
start_value=100, | ||
step_mean=0.05, | ||
step_stddev=3, | ||
min_value=0, | ||
apply=int, | ||
), | ||
"date": index, | ||
} | ||
return pd.DataFrame(data) | ||
|
||
|
||
@click.group() | ||
def main(): | ||
pass | ||
|
||
|
||
class MaterializationDriver(driver.Driver, abc.ABC): | ||
def __init__(self, config: Dict[str, Any], *modules: ModuleType): | ||
super(MaterializationDriver, self).__init__(config, *modules) | ||
|
||
@abc.abstractmethod | ||
def materialize(self, df: pd.DataFrame, table: str): | ||
"""Materializes (saves) the specified dataframe to a db/table combo | ||
:param db: | ||
:param table: | ||
:return: | ||
""" | ||
pass | ||
|
||
def materialize_to(self, var: driver.Variable) -> Optional[str]: | ||
"""Returns a db, dtable tuple of materialization | ||
:param var: Variable representing the node in the hamilton DAG | ||
:return: None if we want to bypass materialization, else a string representing the "table" | ||
""" | ||
if "materialization.table" in var.tags: | ||
if var.type != pd.DataFrame: | ||
raise ValueError( | ||
f"Node: {var.name} requests materialization but does not produce a pandas dataframe, rather a: {var.type}" | ||
) | ||
return var.tags["materialization.table"] | ||
return None | ||
|
||
def execute_and_materialize( | ||
self, overrides: Dict[str, Any] = None, inputs: Dict[str, Any] = None | ||
): | ||
"""Executes and materializes it | ||
:param overrides: | ||
:param inputs: | ||
:return: | ||
""" | ||
nodes_to_materialize = [ | ||
var for var in self.list_available_variables() if self.materialize_to(var) is not None | ||
] | ||
raw_execute_results = self.raw_execute( | ||
[var.name for var in nodes_to_materialize], overrides=overrides, inputs=inputs | ||
) | ||
for node in nodes_to_materialize: | ||
self.materialize(raw_execute_results[node.name], self.materialize_to(node)) | ||
|
||
|
||
class DuckDBMaterializationDriver(MaterializationDriver): | ||
def __init__(self, path: str, config: Dict[str, Any], modules: List[ModuleType]): | ||
super(DuckDBMaterializationDriver, self).__init__(config, *modules) | ||
self.con = duckdb.connect(database=path, read_only=False) | ||
|
||
def materialize(self, df: pd.DataFrame, table: str): | ||
self.con.execute(f"CREATE TABLE {table} AS SELECT * from df") | ||
self.con.fetchall() | ||
|
||
def close(self): | ||
self.con.close() | ||
|
||
|
||
class CSVMaterializationDriver(MaterializationDriver): | ||
def __init__(self, path: str, config: Dict[str, Any], modules: List[ModuleType]): | ||
super(CSVMaterializationDriver, self).__init__(config, *modules) | ||
self.path = path | ||
|
||
def materialize(self, df: pd.DataFrame, table: str): | ||
if not os.path.exists(self.path): | ||
os.makedirs(self.path, exist_ok=True) | ||
df.to_csv(os.path.join(self.path, f"{table}.csv")) | ||
|
||
|
||
def _get_module() -> ModuleType: | ||
return ad_hoc_utils.create_temporary_module( | ||
index, marketing_spend_by_channel, signups_by_business_line, churn_by_business_line | ||
) | ||
|
||
|
||
@main.command() | ||
@click.option("--db-path", type=click.Path(exists=False), required=True) | ||
def setup_duck_db(db_path: str): | ||
driver = DuckDBMaterializationDriver(path=db_path, config={}, modules=[_get_module()]) | ||
driver.execute_and_materialize() | ||
driver.close() | ||
|
||
|
||
@main.command() | ||
@click.option("--db-path", type=click.Path(exists=False)) | ||
def setup_csv(db_path: str): | ||
driver = CSVMaterializationDriver(path=db_path, config={}, modules=[_get_module()]) | ||
driver.execute_and_materialize() | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
import os | ||
|
||
import pandas as pd | ||
|
||
|
||
def spend(db_path: str) -> pd.DataFrame: | ||
return pd.read_csv(os.path.join(db_path, "marketing_spend.csv")) | ||
|
||
|
||
def churn(db_path: str) -> pd.DataFrame: | ||
return pd.read_csv(os.path.join(db_path, "marketing_spend.csv")) | ||
|
||
|
||
def signups(db_path: str) -> pd.DataFrame: | ||
return pd.read_csv(os.path.join(db_path, "marketing_spend.csv")) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
import duckdb | ||
import pandas as pd | ||
|
||
|
||
def connection(db_path: str) -> duckdb.DuckDBPyConnection: | ||
return duckdb.connect(database=db_path) | ||
|
||
|
||
def spend(connection: duckdb.DuckDBPyConnection) -> pd.DataFrame: | ||
return connection.execute("select * from marketing_spend").fetchdf() | ||
|
||
|
||
def churn(connection: duckdb.DuckDBPyConnection) -> pd.DataFrame: | ||
return connection.execute("select * from churn").fetchdf() | ||
|
||
|
||
def signups(connection: duckdb.DuckDBPyConnection) -> pd.DataFrame: | ||
return connection.execute("select * from signups").fetchdf() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
import os | ||
|
||
import generate_test_data | ||
import pandas as pd | ||
|
||
|
||
def index(start_date: str = "20220801", end_date: str = "20220801") -> pd.Series: | ||
return pd.Series(pd.date_range(start=start_date, end=end_date)) | ||
|
||
|
||
def spend(index: pd.Series) -> pd.DataFrame: | ||
return generate_test_data.marketing_spend_by_channel(index) | ||
|
||
|
||
def churn(index: pd.Series) -> pd.DataFrame: | ||
return generate_test_data.churn_by_business_line(index) | ||
|
||
|
||
def signups(index: pd.Series) -> pd.DataFrame: | ||
return generate_test_data.signups_by_business_line(index) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
import pandas as pd | ||
|
||
from hamilton.function_modifiers import does, extract_columns, parameterize, source, value | ||
|
||
|
||
def _sum_series(**series): | ||
return sum(series.values()) | ||
|
||
|
||
@extract_columns( | ||
"facebook_spend", | ||
"twitter_spend", | ||
"tv_spend", | ||
"youtube_spend", | ||
"radio_spend", | ||
"billboards_spend", | ||
"womens_churn", | ||
"mens_churn", | ||
"womens_signups", | ||
"mens_signups", | ||
) | ||
def joined_data(spend: pd.DataFrame, signups: pd.DataFrame, churn: pd.DataFrame) -> pd.DataFrame: | ||
spend = spend.set_index("date").rename(columns=lambda col: col + "_spend") | ||
churn = churn.set_index("date").rename(columns=lambda col: col + "_churn") | ||
signups = signups.set_index("date").rename(columns=lambda col: col + "_signups") | ||
return pd.concat([spend, churn, signups], axis=1) | ||
|
||
|
||
@does(_sum_series) | ||
def total_marketing_spend( | ||
facebook_spend: pd.Series, | ||
twitter_spend: pd.Series, | ||
tv_spend: pd.Series, | ||
youtube_spend: pd.Series, | ||
radio_spend: pd.Series, | ||
billboards_spend: pd.Series, | ||
) -> pd.Series: | ||
pass | ||
|
||
|
||
@does(_sum_series) | ||
def total_signups(mens_signups: pd.Series, womens_signups: pd.Series) -> pd.Series: | ||
pass | ||
|
||
|
||
@does(_sum_series) | ||
def total_churn(mens_churn: pd.Series, womens_churn: pd.Series) -> pd.Series: | ||
pass | ||
|
||
|
||
def total_customers(total_signups: pd.Series, total_churn: pd.Series) -> pd.Series: | ||
customer_deltas = total_signups + total_churn | ||
return customer_deltas.cumsum() | ||
|
||
|
||
def acquisition_cost(total_marketing_spend: pd.Series, total_signups: pd.Series) -> pd.Series: | ||
return total_marketing_spend / total_signups | ||
|
||
|
||
@parameterize( | ||
twitter_spend_smoothed={"lookback_days": value(7), "spend": source("twitter_spend")}, | ||
facebook_spend_smoothed={"lookback_days": value(7), "spend": source("facebook_spend")}, | ||
radio_spend_smoothed={"lookback_days": value(21), "spend": source("radio_spend")}, | ||
tv_spend_smoothed={"lookback_days": value(21), "spend": source("tv_spend")}, | ||
billboards_spend_smoothed={"lookback_days": value(7), "spend": source("billboards_spend")}, | ||
youtube_spend_smoothed={"lookback_days": value(7), "spend": source("twitter_spend")}, | ||
) | ||
def spend_smoothed(lookback_days: int, spend: pd.Series) -> pd.Series: | ||
"""{spend} smoothed by {lookback_days}. Might want to smooth different ad spends differently, | ||
figuring that it takes different amounts of time to get to the customer. A cheap hack at determining | ||
auto-correlation of a series -- this should be a parameter in a model, | ||
but this is to demonstrate the framework | ||
:param lookback_days: Days to smooth over | ||
:param spend: Spend source | ||
:return: | ||
""" | ||
return spend.rolling(window=lookback_days).mean() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
click | ||
duckdb==0.5.0 |
Oops, something went wrong.